在足够大的对象分类数据集上进行训练时,特定的人工神经网络模型可以合理匹配核心对象识别 (COR) 行为和灵长类视觉腹侧流 (VVS) 中的潜在神经反应模式。机器学习的最新发现表明,在更大的数据集上训练更大的模型并投入更多的计算预算可以提高任务性能,但目前尚不清楚规模如何影响大脑对齐。我们在此研究了灵长类 VVS 建模的缩放定律,这些定律涉及以受控方式训练的 300 多个模型中数据集和模型大小的计算最优分配。为了评估模型的大脑对齐,我们使用了一组涵盖整个 VVS 和 COR 行为的基准。我们发现,虽然增加模型参数的数量最初会改善大脑对齐,但更大的模型最终会导致收益递减。增加数据集大小可以从经验上持续改善对齐,但我们推断,这里的规模对于非常大的数据集也会趋于平稳。将我们对模型和数据大小的最佳计算预算分配与缩放定律相结合,我们预测单凭规模不会导致大脑与当前架构和数据集的一致性取得实质性进展。
摘要 几十年来,多个科学领域一直在讨论腹侧和背侧视觉流之间的相互作用程度。最近,由于自动化和可重复方法的进步,研究直接连接与背侧和腹侧流相关的皮质区域的几种白质束已成为可能。这组束(此处称为后垂直通路 (PVP))的发育轨迹尚未描述。我们提出了一种输入驱动的白质发育模型,并通过关注 PVP 的发育为该模型提供证据。我们使用可重复的云计算方法和成人和儿童(5-8 岁)的扩散成像来比较 PVP 的发育与腹侧和背侧通路内的束的发育。PVP 微结构比背侧流微结构更像成人,但比腹侧流微结构更不像成人。此外,PVP 微结构与腹侧流的微结构比背侧流的微结构更相似,并且可以通过儿童在感知任务中的表现来预测。总体而言,结果表明 PVP 在背侧视觉流的发展中发挥了潜在作用,这可能与其在学习过程中促进腹侧流和背侧流之间相互作用的能力有关。我们的结果与提出的模型一致,表明主要白质通路的微结构发展至少在一定程度上与视觉系统内感觉信息的传播有关。
摘要 几十年来,多个科学领域一直在讨论腹侧和背侧视觉流之间的相互作用程度。最近,由于自动化和可重复方法的进步,研究与背侧和腹侧流相关的皮质区域直接连接的几种白质束已成为可能。这组束(此处称为后垂直通路 (PVP))的发育轨迹尚未描述。我们提出了一种输入驱动的白质发育模型,并通过关注 PVP 的发育为该模型提供证据。我们使用可重复的云计算方法和成人和儿童(5-8 岁)的扩散成像来比较 PVP 的发育与腹侧和背侧通路内的束的发育。PVP 微结构比背侧流微结构更像成人,但比腹侧流微结构更不像成人。此外,PVP 微结构与腹侧流的微结构比背侧流的微结构更相似,并且可以通过儿童在感知任务中的表现来预测。总体而言,结果表明 PVP 在背侧视觉流的发展中发挥了潜在作用,这可能与其在学习过程中促进腹侧流和背侧流之间相互作用的能力有关。我们的结果与提出的模型一致,表明主要白质通路的微结构发展至少在一定程度上与视觉系统内感觉信息的传播有关。