结果:我们生产了一种不含佐剂的自组装纳米颗粒疫苗,可对抗多种甲型流感病毒。这种纳米颗粒疫苗在幽门螺杆菌铁蛋白表面显示多抗原靶点,该铁蛋白由 H3N2 病毒血凝素的胞外域和三个串联高度保守的甲型流感病毒 M1 表位组成,这些表位与通用辅助 T 细胞表位 PADRE 融合,称为 HMP-NP。HMP-NP 在杆状病毒-昆虫细胞系统中以可溶形式表达,并自组装成均质纳米颗粒。动物免疫研究表明,HMP-NP 纳米疫苗引起的血凝抑制 (HAI) 滴度比灭活甲型流感疫苗高 4 倍。 HMP-NPs 对 H3N2 病毒和 H1N1 和 H9N2 病毒异源株诱导的中和滴度分别比灭活流感疫苗高约 8、12.4 和 16 倍。同时,我们还观察到 HMP-NPs 诱导的 IFN-γ 和 IL-4 分泌细胞数量比灭活流感疫苗高约 2.5 倍。重要的是,使用 HMP-NPs 进行鼻内免疫(不使用任何佐剂)可诱导有效的粘膜 IgA 反应并赋予对 H3N2 病毒的完全保护,以及对 H1N1 和 H9N2 病毒的部分保护,并显着降低肺病毒载量。
Hypoxia-inducible factor 2 α promotes protective Th2 cell responses during intestinal 1 helminth infection 2 3 Jasmine C. Labuda 1 , Tayla M. Olsen 1,2 , Sheenam Verma 1 , Samantha Kimmel 1 , Thomas H. 4 Edwards 3 , Matthew J. Dufort 3 , Oliver J. Harrison 1,4 5 6 1 Center for Fundamental Immunology, Benaroya Research美国华盛顿州西雅图研究所。7 2分子和蜂窝生物学计划,美国华盛顿州西雅图市华盛顿大学。8 3美国华盛顿州西雅图市贝纳罗亚研究所系统免疫学中心。9 4美国华盛顿州华盛顿大学华盛顿大学免疫学系。10 11通信:oharrison@benaroyaresearch.org 12 13摘要:TH2细胞必须感知并适应组织环境,以提供保护性宿主14免疫和组织修复。在这里,我们检查了促进Th2细胞15分化和功能的机制。单细胞RNA-seq 16分析来自小肠道椎板椎板的CD4 + T细胞17揭示了基因EPAS1的高表达,编码了转录因子缺氧缺氧诱导的18因子2a(HIF2α)。在体外,即使在非极化条件下,暴露于缺氧或遗传HIF2α激活也促进了Th2细胞19分化。在小鼠中,CD4 + T细胞中的HIF2α激活20在没有感染的情况下促进了肠道Th2细胞的积累,而HIF2α缺陷21受损的CD4 + T细胞介导的宿主对肠舵感感染的免疫免疫。24 25简介:肠蠕虫感染是全球最普遍的慢性感染26。我们的发现22确定了缺氧,氧调节的转录因子缺氧诱导因子2α23(HIF2α)是小肠内Th2细胞分化和功能的关键调节剂。Helminth infections are often associated with polarized “type 2” immunity, including 27 activation and accumulation of T helper 2 (Th2) cells, type-2 innate lymphoid cells (ILC2), tissue 28 basophils and eosinophils, elevated serum immunoglobulin E (IgE), alternative activation of 29 macrophages and alterations of epithelial differentiation and mucus production that统称30重塑感染的解剖部位2。免疫事件和31个组织重塑的类似级联反应引发局部组织病理学发生在过敏性疾病中,包括过敏32哮喘3。33 34指导屏障组织中Th2细胞分化的机制尚不清楚。35然而,证据支持组织微环境在建立36保护性Th2细胞分化和功能中的指导性作用,这是由染色质访问性37和/或基因表达的变化提供的,在将Th2细胞从淋巴结到本塞质体38组织4,5的TH2细胞转运后的基因表达。组织警报蛋白,包括IL-25,IL-33和TSLP是在39个屏障组织中产生的关键因素,这些因素在Helminth 40感染6,7期间共同促进2型免疫力和Th2细胞反应。在41个屏障组织中影响Th2细胞功能的组织环境中其他提示的身份仍有待鉴定。42 43缺氧诱导因子(HIF)是介导细胞的关键转录因子,对缺氧8的有机体反应4。Consisting of 3 family members, (HIF1 α , HIF2 α and HIF3 α , 45 encoded by Hif1a , Epas1 and Hif3a, respectively), HIFs are post-translationally modified in an 46 oxygen-dependent enzymatic cascade that regulates their stability, nuclear translocation, 47 binding to hypoxia-response elements (HRE) and transcription of低氧诱导基因8。48在常氧条件下,HIF蛋白通过氧气在关键的脯氨酸残基上通过氧气-49依赖性丙酰羟化酶(PHD)酶羟基氧化。通过50
目的:研究谷氨酸单钠(MSG)对大鼠小脑皮质的神经毒性作用,并评估褪黑激素的潜在神经保护作用。Methods: Adult male albino rats (40) were randomly categorized into four groups of ten rats each comprising Group I (control), Group II (melatonin-treated, 6 mg/kg/day via intraperitoneal injection), Group III (MSG-treated, 4 mg/kg/day IP) and Group IV (co-treated with MSG and melatonin).注射14天后,处死大鼠并收集血液样本,以确定血糖,总胆固醇(TC)和甘油三酸酯(TG)水平。小脑组织进行组织学检查,并使用均质样品来估计丙二醛(MDA),谷胱甘肽(GSH),肿瘤坏死因子-α(TNF-α)和白介素1β(IL-1β)水平。结果:MSG的给药显着(P <0.05)增加了血清葡萄糖,TC,TG,MDA,TNF-α和IL-1β水平,同时显着降低了GSH水平(P <0.05)。组织学分析表明,MSG施加了退化作用,包括caspase-3和胶质纤维纤维酸性蛋白的强阳性反应,以及β-细胞淋巴瘤-2和突触possysin的弱反应。但是,褪黑激素给药改善了这些参数。结论:谷氨酸单钠会诱导大鼠小脑皮层的神经元损伤,但褪黑激素对这些退化性变化具有保护作用。需要其他研究来了解味精和褪黑激素作用的机制。关键字:谷氨酸单钠,褪黑激素,小脑,GFAP,神经保护症
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。 “
目标:SARS-COV-2正在不断发展,以逃避保护性免疫并引起新感染的新变体。这项研究旨在评估感染获得的免疫和杂种免疫,以抗感染或严重的COVID-19。方法:在2020年至2023年期间,我们从感染了SARS-COV-2变体的个体中收集了890个血清样品,包括野生型,D614G,D614G,Alpha,delta,ba.1,ba.2,ba.2,ba.2.76,ba.2.76,ba.5.5,BA.5.2,bf.7,xbb和eg.5。使用基于珠的高通量宽中和中和中和抗体测定法测定了针对18种不同SARS-COV-2变体的血清中和抗体(NAB)的水平。结果:在COVID-19大流行的初始浪潮中,> 75%的患者在尚无疫苗的时期表现出针对祖先SARS-COV-2的NAB反应。在Omicron变体中出现后,患者抗分子NAB的血清阳性率迅速增加。到2023年4月,当XBB变体主要为主导时,大约80%的患者对高度免疫异化XBB谱系的恶魔> 50%中和。SARS-COV-2的三种血清型,即鉴定出非球,Omicron和XBB血清型,并且随着病毒突变而发生进一步变化的可能性很大。通常,先前的血清型引起的NABS通常无法有效地保护在进化阶段后期出现的另一种血清型。结论:我们的结果首先证明了现实世界中宿主免疫与SARS-COV-2变体之间的协同演变,这将有助于制定未来的疫苗和公共卫生策略。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2024 年 10 月 16 日发布。;https://doi.org/10.1101/2022.11.10.515993 doi:bioRxiv 预印本
抽象感染性支气管炎病毒(IBV)具有多种血清型,在家禽行业引起许多问题。针对菌株IS/1494/06(变体2)IBV挑战,评估了两种H120和H120-D274实时疫苗。这项研究旨在确定是否有可能通过将两种类型的疫苗与家禽IBV的不同严重程度相结合来控制疾病症状和病理病变并减少病毒脱落。在随机选择100只特定病原体的鸡后,在H120中安排了4只25只小鸡/组实验组(IB-H120,Intervet®;串行NO:****在第一天 + Booster 14th + Booster 14th + IS/1494/06-14 DPV挑战),H120-D274(POULVAC®ibirered + booter) + booter。 IS/1494/06-14 DPV),控制(无疫苗 +无挑战),并受到挑战(无疫苗 +挑战)。在研究的第42天,动物安乐死之后,血清中和(第14、28和42天),ELISA,ELISA(在增强疫苗后14天,在受到挑战之前),Ciliostasis,Ciliostasis(增强疫苗7天后(在促进疫苗后7天),在挑战后7天,在挑战后进行了病理学摄入量为142,在142中被评估为142/14/int 142。此外,通过实时聚合酶链反应监测病毒脱落。感染表现出高至中度的纤毛和病理评分。所有接收IB-H120-D274疫苗的组相对较少。与IB-H120疫苗组相比,IB-H120-D274疫苗接种组显示出最高的保护率和高保护率(70.3)(24.4)。与接收IB-H120疫苗的疫苗相比,接受H120-D274疫苗的组的病毒脱落显着降低。总之,与IB-H120疫苗相比,同源IB-H120-D274疫苗的结果较高。关键字:组合疫苗,ELISA,IBV,实时PCR,血清中和测试
b“总结大脑的纯粹复杂性使我们了解其在健康和疾病中功能的细胞和分子机制的能力。全基因组关联研究发现了与特定神经系统型和疾病相关的遗传变异。此外,单细胞转录组学提供了特定脑细胞类型及其在疾病期间发生的变化的分子描述。尽管这些方法为理解遗传变异如何导致大脑的功能变化提供了巨大的飞跃,但它们没有建立分子机制。为了满足这种需求,我们开发了一个3D共培养系统,称为IASEMBLOI(诱导的多线组件),该系统能够快速生成同质的神经元-GLIA球体。我们用免疫组织化学和单细胞转录组学表征了这些Iassembloid,并将它们与大规模CRISPRI的筛选结合在一起。在我们的第一个应用中,我们询问神经胶质细胞和神经元细胞如何相互作用以控制神经元死亡和生存。我们的基于CRISPRI的筛选确定GSK3 \ XCE \ XB2在存在高神经元活性引起的活性氧的存在下抑制了保护性NRF2介导的氧化应激反应,这先前在2D单一神经元筛选中没有发现。我们还应用平台来研究ApoE-4的作用,APOE-4是阿尔茨海默氏病的风险变体,对神经元生存的影响。与APOE-3-表达星形胶质细胞相比,表达APOE-4表达星形胶质细胞可能会促进更多的神经元活性。该平台扩展了工具箱,以无偏鉴定大脑健康和疾病中细胞 - 细胞相互作用的机制。关键词功能基因组学,神经元 - 糖共培养,必需基因,单核RNA测序,CRISPR干扰,作物seq,氧化应激,GSK3B,NFE2L2,NFE2L2,神经元活动
线粒体融合和裂变伴随着压力和代谢需求改变的适应性反应。内膜融合和CRISTAE形态发生取决于视觉萎缩1(OPA1),它以不同的同工型表达,并从膜结合的裂解,长到可溶的短形式。在这里,我们通过生成仅表达一种可裂解的OPA1同工型或不可裂解的变体来分析OPA1同工型和OPA1处理的物理学作用。我们的结果表明,单个可裂解或不可裂解的OPA1同工型的表达可保留胚胎发育和成年小鼠的健康。OPA1处理在代谢和热应力下是可分配的,但可以延长寿命,并预防缺乏OXPHOS缺陷COX10 - / - 小鼠中的线粒体心脏肌病。从机械上讲,OPA1处理的损失会破坏线粒体生物发生和线粒体之间的平衡,从而抑制了Cox10 - / - 心脏中心脏肥大的生长。我们的结果突出了OPA1加工,线粒体动力学和心脏肥大的代谢的关键调节作用。
1老年学院(上海大学),上海大学的南北医院(Nantong第六人医院),上海大学医学院,上海大学,226011 Nantong,Jiangsu,中国中国2个心脏再生和老化实验室,Cardibascular Sciencular Sciencular Science of Strangiai Shanghai Intern ofan ofter of Orange of Stranghai Shanghai Shanghai Intor,Shanghai Intor,Shangshai Intor,Shanghai Intor,Shangshai inter,shanghai 200444年上海,马萨诸塞州综合医院和哈佛医学院的心血管司,马萨诸塞州波士顿,美国402114,美国4生物学发展,萨诺菲,马萨诸塞州弗雷明汉,马萨诸塞州01701,美国5中国富士350001福建医科大学医院 *通信:fjxhyjl@163.com(yanjuan lin); junjiexiao@shu.edu.edu.cn(junjie xiao)†这些作者同样做出了贡献。
