摘要:硅像素传感器上的防护环结构有益于提高传感器的高压承受性能。为了评估防护圈结构对硅像素传感器的保护效果,模拟和分析了三种防护环结构。通过技术计算机辅助设计进行了三个防护环结构的两个维度建模,并使用软件内置的电气模型模拟了三个防护圈结构的I -V特性。当前收集环的存在可以使像素可以承受高压,并且不等的防护戒指,不同的空间后卫环,内部和外部等距的Al悬架,并且多个防护戒指结构有益于进一步增加传感器的击穿电压。关键词:PIN二极管silicon Pixel Sensor;防护戒指;耐用高压;技术计算机辅助DEGSIN OCIS代码:280.4750 ;230。0040 ;230.5160
在进行各种研究的过程中,观察到保护环光电二极管的暗电流水平不受控制地增加的问题,这种问题在温度T 293 K 时和(很大程度上)在高温(T 358 K)下测试设备时都表现出来。众所周知,微电子技术总是使用半导体器件和集成电路的表面保护(钝化)。在这种情况下,最好的解决方案是热生长SiO 2 层。然而,即使是受介电层保护的表面也并不总是保持稳定。本文介绍了基于高电阻率p型硅的ap-i-n光电二极管的开发结果,该光电二极管具有更高的响应度和更低的保护环在1064 nm波长处的暗电流水平。在提出的光电二极管设计中,晶体外围氧化物的厚度减小,以减少电流和电荷态的位错分量对逆特性的影响。磷扩散(驱入)后,除去磷硅酸盐玻璃,并进行额外的光刻,在此期间整个外围氧化物层都被蚀刻掉。在磷扩散(蒸馏)的第二阶段,在光敏区域和晶体外围生长厚度为190-220 nm 的抗反射氧化物。光敏区域、保护环和晶体外围部分由在第一次热操作中生长的650-700 nm 厚的氧化物隔开。光电二极管的生产采用与商业生产相同的操作条件,并将其参数与标准设计制造的器件进行了比较。分析表明,与商用器件相比,所提出设计的光电二极管不仅在室温下,而且在358 K 的温度下都具有更低、更稳定的暗电流。
开发了具有平面电极排列的小型硅肖特基二极管 (0.8x0.8x0.4 mm 3 ) 芯片 (PSD),用作温度传感器,在压力传感器的工作条件下工作。PSD 芯片的正向 IV 特性由 Mo 和 n-Si (ND = 3 × 10 15 cm -3 ) 之间的势垒决定。在电源电流 IF = 1 mA 时,实现了正向电压 UF = 208 ± 6 mV 和温度系数 TC = - 1.635 ± 0.015 mV/⁰C(线性度 k T <0.4%,温度范围为 - 65 至 +85 ⁰C)。由于芯片 PSD 包含沿阳极周边的两个 p 型保护环结构,因此反向 IV 特性具有高击穿电压 U BR > 85 V 和低漏电流 IL < 5 μA(25 ⁰C 时)和 IL < 130 μA(85 ⁰C 时)(UR = 20 V)。证明了 PSD 芯片适用于从 - 65 到 +115 ⁰C 的更宽温度范围。温度传感器的独立芯片 PSD 位于距离压力传感器芯片不到 1.5 毫米的位置。PSD 芯片传输输入数据,以通过 ASIC 对压力传感器误差进行温度补偿并进行直接温度测量。关键词:温度传感器、肖特基二极管、Mo/Si-n 屏障、保护环、压力传感器。
免责声明:1- 为改进产品特性,本文档提供的信息(包括规格和尺寸)如有变更,恕不另行通知。订购前,建议购买者联系 SMC - 桑德斯特微电子(南京)有限公司销售部,获取最新版本的数据表。2- 在需要极高可靠性的情况下(例如用于核电控制、航空航天、交通设备、医疗设备和安全设备),应使用具有安全保证的半导体器件或通过用户的故障安全预防措施或其他安排来确保安全。3- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对用户根据数据表操作设备期间因事故或其他原因造成的任何损害负责。 SMC - 桑德斯特微电子(南京)有限公司对任何知识产权索赔或因应用数据表中描述的信息、产品或电路而导致的任何其他问题不承担任何责任。4- 在任何情况下,SMC - 桑德斯特微电子(南京)有限公司均不对因使用超过绝对最大额定值的数值而导致的任何半导体设备故障或任何二次损坏负责。 5- 本数据表不授予任何第三方或 SMC - 桑德斯特微电子(南京)有限公司的任何专利或其他权利。6- 未经 SMC - 桑德斯特微电子(南京)有限公司书面许可,不得以任何形式复制或复印本数据表的全部或部分。7- 本数据表中描述的产品(技术)不得提供给任何其应用目的会妨碍维护国际和平与安全的一方,其直接购买者或任何第三方也不得将其用于此目的。出口这些产品(技术)时,应根据相关法律法规办理必要的手续。
摘要——采用 CMOS 工艺实现的硅光子学已经改变了计算、通信、传感和成像领域。尽管硅是一种间接带隙材料,阻碍了高效发光,但在高压反向击穿雪崩模式下工作时在发射宽带可见光的硅 pn 结领域已经进行了大量研究。在这里,我们展示了在开放式代工厂微电子 CMOS 工艺 55BCDLite 中实现的正向偏置硅微发光二极管 (micro-LED) 的高亮度近红外 (NIR) 光发射,无需任何修改。在室温连续波操作下,对于直径为 4 µ m 的器件,在低于 2.5 V 的电压下,在中心波长为 1020 nm 处实现了超过 40 mW/cm 2 的外部发光强度。这是通过采用具有保护环设计的深垂直结来实现的,以确保载流子传输远离器件表面和非辐射复合通常占主导地位的材料界面。在这里,我们还展示了仅使用标准多模光纤和单片集成 CMOS 微型 LED 和探测器的完整芯片到芯片通信链路。
随着晶体管特征尺寸的减小,HE 对高能粒子的敏感性会增加 [1-3]。由于电子系统广泛用于恶劣环境,文献中对缓解辐射影响的技术进行了大量的研究 [4-7]。可以从制造工艺修改到不同的设计实现来探索辐射加固策略。掺杂分布的修改、沉积工艺的优化和不同材料的使用都是众所周知的工艺加固辐射 (RHBP) 技术的例子。然而,除了成本较高之外,RHBP 通常比最先进的 CMOS 工艺落后几代,导致性能低下。另一方面,辐射加固设计 (RHBD) 已被证明可有效增强对辐射效应的抵抗力 [7]。这些技术可以在从电路布局到系统设计的不同抽象级别上实现。单粒子效应 (SEE) 的产生机制与集成电路 (IC) 的物理布局密切相关,例如,晶体管 pn 结中的能量沉积和电荷收集之间的关系。因此,可以在电路布局级别应用多种硬化方法,例如封闭布局晶体管 (ELT)、保护环、虚拟晶体管/栅极或双互锁存储单元 (DICE) [6-9]。