摘要 - 胎儿心率(FHR)是预防分娩过程中胎儿缺氧的筛查信号。专家分析此信号时,他们必须定位基线并确定减速和加速度。这些步骤可能是自动化的,并通过数据处理分析更加客观,但是需要培训和评估数据集。在这里,我们描述了155个FHR记录的数据集,其中参考基线,加速度和减速已由专家共识注释。66 FHR记录和共享的专家分析已包含在培训数据集中,并且评估数据集中还包括了90个其他具有非共享专家分析的FHR记录。希望评估其自动分析方法的研究人员应提交其结果,以与专家共识进行比较。数据集还包含文献中11种重新编码的自动分析方法产生的结果。所有数据均可在http://utsb.univ-catholille.fr/fhr-review中获得。
是一种在基因组学领域中广泛使用的技术。但是,目前缺乏从纳米孔测序设备创建模拟数据的有效工具,这些工具以时间序列的当前信号数据的形式测量DNA或RNA分子。在这里,我们介绍了Squigulator,这是一个快速而简单的工具,用于模拟逼真的纳米孔信号数据。s弹器采用参考基因组,转录组或读取序列,并生成相应的原始纳米孔信号数据。这与牛津纳米孔技术(ONT)和其他第三方工具的基本软件兼容,从而为纳米孔分析工作流的每个阶段提供了有用的基板,用于开发,测试,调试,验证和优化。用户可以使用模拟特定ONT协议或无噪声“理想”数据的预设参数生成数据,或者他们可以确定性地修改一系列实验变量和/或噪声参数以满足其需求。我们提供了一个简短的用途示例,创建了模拟数据,以模拟不同参数影响ONT基本和下游变体检测准确性的程度。此分析揭示了对ONT数据和基本算法的性质的新见解。我们为纳米孔社区提供了旋转器作为开源工具。
神经系统疾病的诊断是现代医学面临的最大挑战之一,也是当前的一个主要问题。脑电图 (EEG) 记录通常用于识别各种神经系统疾病。EEG 会产生大量的多通道时间序列数据,神经科医生可以通过视觉分析这些数据来识别和了解大脑内的异常及其传播方式。这是一个耗时、容易出错、主观且令人精疲力尽的过程。此外,EEG 分类的最新进展主要集中在使用 EEG 数据将特定疾病的患者与健康受试者进行分类,这种方法成本效益不高,因为它需要多个系统来检查受试者的 EEG 数据以查找不同的神经系统疾病。这迫使研究人员推进他们的工作,并创建一个统一的分类框架,用于从 EEG 信号数据中识别各种神经系统疾病。因此,本研究旨在通过开发一种基于机器学习 (ML) 的数据挖掘技术来满足这一要求,以从 EEG 数据中对多种异常进行分类。纹理特征提取器和基于 ML 的分类器用于时频谱图图像以开发分类系统。首先,使用滤波技术从信号中去除噪声和伪影,然后进行归一化以降低计算复杂度。之后,将归一化信号分割成小的时间段,并使用短时傅里叶变换从这些时间段生成频谱图图像。然后使用两个基于直方图的纹理特征提取器分别计算特征,并使用主成分分析从提取的特征中选择显著特征。最后,使用四种不同的基于 ML 的分类器将选定的特征归类为不同的疾病类别。在四个实时 EEG 数据集上测试了所开发的方法。所得结果显示出对各种异常类型进行分类的潜力,表明可以利用它从脑信号数据中识别各种神经系统异常。
了解我们的大脑是最艰巨的任务之一,如果不使用技术,我们就无法完成。MindBigData [1] 旨在提供与各种人类活动相关的全面且最新的脑信号数据集,以便启发使用机器学习算法作为基准,将原始大脑活动“解码”为其相应的(标签)心理(或身体)任务。使用商业化的自体脑电图 [2] 设备或我们自己制造的定制设备来探索技术的极限。我们描述了每个子数据集的数据收集程序以及用于捕获它们的每个耳机。此外,我们还报告了脑机接口 (BCI) 领域可能的应用,这些应用可能会影响数十亿人的生活,几乎涵盖所有领域,例如医疗保健游戏规则改变用例、工业或娱乐等等,最后,为什么不直接使用我们的大脑来“消除”感官,作为最终的 HCI(人机交互)设备?我们简单地称之为从打字到触摸到交谈再到思考的旅程 [3]。
神经系统疾病的诊断是现代医学面临的最大挑战之一,也是当前的一个主要问题。脑电图 (EEG) 记录通常用于识别各种神经系统疾病。EEG 会产生大量的多通道时间序列数据,神经科医生可以通过视觉分析这些数据来识别和了解大脑内的异常及其传播方式。这是一个耗时、容易出错、主观且令人精疲力尽的过程。此外,EEG 分类的最新进展主要集中在使用 EEG 数据将特定疾病的患者与健康受试者进行分类,这种方法成本效益不高,因为它需要多个系统来检查受试者的 EEG 数据以查找不同的神经系统疾病。这迫使研究人员推进他们的工作,并创建一个统一的分类框架,用于从 EEG 信号数据中识别各种神经系统疾病。因此,本研究旨在通过开发一种基于机器学习 (ML) 的数据挖掘技术来满足这一要求,以从 EEG 数据中对多种异常进行分类。纹理特征提取器和基于 ML 的分类器用于时频谱图图像以开发分类系统。首先,使用滤波技术从信号中去除噪声和伪影,然后进行归一化以降低计算复杂度。之后,将归一化信号分割成小的时间段,并使用短时傅里叶变换从这些时间段生成频谱图图像。然后使用两个基于直方图的纹理特征提取器分别计算特征,并使用主成分分析从提取的特征中选择显著特征。最后,使用四种不同的基于 ML 的分类器将选定的特征归类为不同的疾病类别。在四个实时 EEG 数据集上测试了所开发的方法。所得结果显示出对各种异常类型进行分类的潜力,表明可以利用它从脑信号数据中识别各种神经系统异常。
摘要 — 以时间序列形式出现的信号测量是医学机器学习应用中最常见的数据类型之一。此类数据集通常规模较小,收集和注释成本高昂,并且可能涉及隐私问题,这阻碍了我们为生物医学应用训练大型、最先进的深度学习模型的能力。对于时间序列数据,我们可以用来扩展数据集大小的数据增强策略套件受到需要维护信号基本属性的限制。生成对抗网络 (GAN) 可以用作另一种数据增强工具。在本文中,我们提出了 TTS-CGAN,这是一种基于 Transformer 的条件 GAN 模型,可以在现有的多类数据集上进行训练并生成任意长度的特定于类的合成时间序列序列。我们详细阐述了模型架构和设计策略。我们的模型生成的合成序列与真实序列没有区别,可以用来补充或替换相同类型的真实信号,从而实现数据增强的目标。为了评估生成数据的质量,我们修改了小波相干性度量,以便能够比较两组信号之间的相似性,并进行了一个案例研究,其中使用合成数据和真实数据的混合来训练用于序列分类的深度学习模型。结合其他可视化技术和定性评估方法,我们证明 TTS-CGAN 生成的合成数据与真实数据相似,并且我们的模型比其他为时间序列数据生成构建的最先进的 GAN 模型表现更好。TTS-CGAN 源代码:github.com/imics-lab/tts-cgan