abled驱动器和残疾驱动程序之间的区别将消失。基于脑电图(EEG)信号的驱动器 - 车辆界面(DVI)将这些信号转换为与驱动相关的命令[5]。天津南卡大学的中国工程师已经开发了一个可以读取大脑信号并相应控制汽车的系统。 在论文[6]中,被认为是开发出对脑部残疾人非常有帮助的脑驱动汽车。 汽车可用于人工智能的异步机理。 几篇论文[7-8]考虑了开发基于脑电图的脑控制的汽车,该汽车可以被身体残疾人使用。 同时考虑了不同神经相互作用模式的各种大脑状态。 大脑模式的特征是不同的脑波频率,例如 β波在12至30 Hz之间与浓度有关,而8至12 Hz之间的α波与放松和精神平静的状态有关[9]。 头部肌肉的收缩也与独特的波模式有关,隔离这些模式是一种检测驾驶员情绪状态的方法[10]。 驾驶员的情绪状态直接影响紧急制动期间的反应时间。 根据文献数据,在紧急制动过程中分析了射击驱动器的压力和反应时间[11]。 Manning [12]在制动时,平均峰值为750 N,没有统计差天津南卡大学的中国工程师已经开发了一个可以读取大脑信号并相应控制汽车的系统。在论文[6]中,被认为是开发出对脑部残疾人非常有帮助的脑驱动汽车。汽车可用于人工智能的异步机理。几篇论文[7-8]考虑了开发基于脑电图的脑控制的汽车,该汽车可以被身体残疾人使用。同时考虑了不同神经相互作用模式的各种大脑状态。大脑模式的特征是不同的脑波频率,例如β波在12至30 Hz之间与浓度有关,而8至12 Hz之间的α波与放松和精神平静的状态有关[9]。头部肌肉的收缩也与独特的波模式有关,隔离这些模式是一种检测驾驶员情绪状态的方法[10]。驾驶员的情绪状态直接影响紧急制动期间的反应时间。根据文献数据,在紧急制动过程中分析了射击驱动器的压力和反应时间[11]。Manning [12]在制动时,平均峰值为750 N,没有统计差
Powersoft 是高效音频电源管理领域的领先公司。全新的 Powersoft DIGAM(数字放大器)技术改变了世界对专业音频放大的看法。对于需要高功率和长期可靠性的应用,没有其他放大器能与之媲美。由于热量输出惊人减少、重量减轻以及特有的高输出功率,DIGAM 放大器可用于无限范围的应用,例如巡回演唱会、歌剧院、剧院、教堂、电影院、主题公园、电视音场和工业应用。声音更大,重量更轻 与传统放大器相比,Powersoft DIGAM 技术效率极高,可为扬声器提供更多功率,同时大大减少散热。更高的效率可以减小尺寸、重量和功耗。放大器的输出级通常以 95% 的效率运行,仅将 5% 的输入能量以热量形式耗散。最有趣的特性之一是 DIGAM 的效率几乎与输出水平无关。传统放大器仅在满额定功率输出时才能达到最佳效率。由于标准音乐的平均功率密度为最大水平的 40%,因此传统放大器在相同音量下很容易产生比 DIGAM 多 10 倍的热量。卓越的声音-声波精度 清晰的高音和紧密、明确的低音:最精确的音频信号再现。专利设计功能确保在失真、频率响应、斜率、功率带宽和倾倒因子等参数方面具有非常高的性能。全数字化,可靠性高 DIGAM 系列基于 PWM 技术,该技术已在电源和逆变器中使用了 30 多年。PWM 具有高可靠性、小尺寸、轻重量和高效率的特点。PWM 转换器用作高频采样器,将可变幅度(音频)信号转换为平均值等于音频输入的脉冲序列。DIGAM 放大器使用非常高的采样频率来获得整个音频带的高性能。Powersoft 拥有 DIGAM 技术的多项专利。最适合您电源的放大器 Powersoft 是第一家使用功率因数校正的放大器制造商。该技术的另一大优势是其性能在很大程度上不受电源电压的影响。此独特功能可确保向主电源提供主要的电阻负载,从而最大限度地减少电流失真和电压/电流位移,从而大大提高放大器在高输出水平下的性能,并避免标准和开关电源常见的主电压崩溃。额定输出功率不随负载/线路条件而变化。
* 通讯作者:sachin.viet@gmail.com,电话:+91-9268793832 摘要 - “癫痫”是一种常见的神经系统大脑疾病,会影响人类生命的任何阶段。全世界约有 1-2% 的人口受到这种主要慢性疾病的影响。在癫痫诊断的几种应用中,脑电图 (EEG) 信号是早期发现癫痫发作的最重要工具。根据癫痫发作,脑电图 (EEG) 信号可分为癫痫性和非癫痫性。最近的研究主要通过两种方法进行了预测和分析癫痫发作的各种可能性:使用信号处理的传统方法和基于深度学习的方法。因此,需要找到一种合适且可靠的方法来检测和分类 EEG 信号中的癫痫发作。由于 EEG 信号本质上非常随机且非线性,因此我们需要一种非线性技术来检查 EEG 信号,从而能够对不同的 EEG 信号(即癫痫信号和非癫痫信号)进行分类。在我们的论文中,我们提出了一种非线性技术,使用递归量化分析方法(缩写为 RQA)来提取 EEG 信号的特征,其参数来自递归图 (RP)。在分析和分类时间序列时,大多数时候会从 EEG 时间序列中提取一些已识别的统计特征集,并将其作为机器学习分类器的输入。我们提出的方法找到了一种使用深度神经网络 (DNN) 对 EEG 信号时间序列进行分类的新颖且合适的方法。因此,使用递归图将 EEG 信号转换为 RGB 图像。我们使用预训练的 DNN 作为 ResNet-50,这是一个深度为 50 层的卷积神经网络,用于从递归图中提取特征。然后我们使用多个机器学习分类器将信号分类为癫痫和非癫痫,并指出 SVM 的准确率最高。本研究论文表明,可以使用深度学习算法通过脑电图信号利用复发图诊断癫痫,这种算法通常用于图像分类挑战。关键词-癫痫;脑电图信号;复发图;深度神经网络;成像时间序列数据 1. 简介大脑是人体的重要器官,负责监测和控制代谢过程。癫痫、缺血性中风和脑肿瘤等脑部疾病可能会损害正常的生物功能 [1]。神经系统疾病影响从婴儿到老年人的所有年龄段的人。这些疾病有几种形式,癫痫在受其影响的人数最多方面位居第四
脑电图 (EEG) 是通过放大和记录人体头皮上由大脑电流产生的电活动而获得的记录 (Zandi 等人,2011;Larson 和 Taulu,2018)。EEG 是脑成像科学中广泛使用的媒介,在脑机接口 (BCI;Gao 等人,2021) 研究中发挥着重要作用。BCI 是一种将脑信号转换为有用命令的在线计算机系统。到目前为止,不同类型的脑信号已被用于开发 BCI 系统。由于其方便和低成本,EEG 信号已成为 BCI 系统中的主要媒介。然而,实践证明,由于 EEG 信号能量较弱,EEG 信号的采集很容易受到各种噪声的干扰。为了从嘈杂的 EEG 信号中提取有用信息 (Shad 等人,2020),在 EEG 信号分析中研究了各种信号处理方法。在脑信号分析中,提高信噪比是一个重要的预处理步骤。传统上,它是使用快速傅里叶变换(FFT)完成的(Wahab et al., 2021)。在BCI中,FFT也用于从EEG信号中实现显著特征的提取。短时傅里叶变换是FFT的增强,它可以生成EEG的二维频谱表示(Ha and Jeong,2019)。然而,STFT的主要缺点是其频率分辨率不可调。Huang提出了一种将STFT与卷积神经网络相结合用于生物医学信号分类的方法(Huang et al., 2019)。此外,基于傅里叶分析的数字滤波器也是EEG信号去噪的重要工具(Hsia and Kraft,1983)。它们的应用包括噪声伪影去除、特定频带的特征选择。尽管近年来新的脑电滤波技术不断涌现,但滤波技术并不是 BCI 研究的重点,相关研究也报告了数字滤波器的缺点(Alhammadi and Mahmoud,2016)。在过去的几十年中,随着计算能力的提高,许多更先进的信号处理方法被发明并投入实践。Upadhyay 提出了一种结合 S 变换和独立成分分析的新技术,用于脑电信号中的伪影消除和噪声抑制(Upadhyay et al.,2016)。Djemili 利用经验模态分解将脑电信号分解为固有模态函数,实现了正常和癫痫脑电特征的智能分类(Djemili et al.,2016)。Jiang 的研究中,提出了一种基于多词典的稀疏表示方法,用于癫痫脑电尖峰的自动检测(Jiang et al.,2020)。 Dora 应用变分模态分解来校正 EEG 测量中的伪影(Dora 和 Biswal,2020 年)。Chen 提出了一种稀疏傅里叶变换,并将其应用于电力线伪影消除(Chen et al.,2021b)。
脑卒中是中国导致伤残调整生命年损失的最高发病率疾病,每年有 200 万新发病例( Wu et al., 2019 )。约 66% 的脑卒中幸存者出现上肢运动障碍,导致日常生活活动功能受限、生活质量低下( Kwah et al., 2013 ;Morris et al., 2013 ),增加家庭和社会的负担。手功能康复是脑卒中康复领域的研究热点和挑战。在所有神经调控技术中,脑机接口(BCI)已被证明对脑卒中后手部运动恢复有效( Biasiucci et al., 2018 ; Cervera et al., 2018 ; Baniqued et al., 2021 )。 BCI 的工作流程包括获取脑信号、提取特征、通过外部设备将信号转换为命令以及激活感觉反馈。BCI 设备已经从固定位置设备更新为移动设备(Mattia 等人,2020 年)。然而,便携式 BCI 设备可能更灵活地用于中风康复。在典型的基于脑电图 (EEG) 的非侵入式 BCI 中,通过提取相关特征从大脑正在进行的电活动中实时解码用户的运动意图,例如运动想象 (MI) 或运动尝试 (MA)(Cervera 等人,2018 年)。许多基于 BCI 的运动康复系统传统上包含同侧感觉运动活动(感觉运动节律,SMR,9–15 Hz)的神经活动解码器(Cervera 等人,2018 年)。 SMR 可以在感觉运动皮层 (SMC) 上测量,并受 MI、MA 或运动执行 (ME) 任务的调制(Frenkel-Toledo 等人,2014 年;Yuan 和 He,2014 年)。基于 EEG 的 SMR 中的任务相关调制通常表现为低频成分 [mu 节律(8-12 Hz)和 beta 节律(13-26 Hz)] 中的 ERD 或 ERS(Pfurtscheller 和 Lopes,1999 年)。MI 或 MA 与可使用 EEG 在 SMC(电极部位 C3 和 C4)上记录的 mu 节律振荡的 ERD 相关(Hasegawa 等人,2017 年;Remsik 等人,2019 年)。MI 是一种心理活动,其中特定的运动在头脑中进行,而没有实际运动(Kilteni 等人,2018 年)。运动尝试是指瘫痪肢体在尚未实际运动或运动较少时尝试移动,但患肢在运动阶段的肌电活动比静息阶段高出几个数量级(Antelis et al., 2017)。它们都在 BCI 实验中被广泛用作一种主动神经调节方式。运动尝试主要用于健康参与者(Meng et al., 2018; Chen et al., 2019)。具体而言,一项荟萃分析表明,基于运动尝试的 BCI 似乎比基于 MI 的 BCI 更有效(Bai et al., 2020)。与基于 MI 的 BCI 相比,基于运动尝试的 BCI 具有更优的效果。基于 SMR 的 BCI 可检测响应运动任务的 SMC 的特征性变化,该范式被多项研究采用(Robinson 等人,2018 年;Li 等人,2021 年;Pinter 等人,2021 年)。在 Biasiucci 等人(2018 年)的研究中,他们要求患者尝试伸展患手(手指和手腕)作为运动任务;Chen 等人(2020 年)设计了手腕伸展作为运动任务;Ramos-Murguialday 等人(2013 年)指导他们的患者尝试伸手(即使手臂不按照他们的意图)、抓住并将一个想象中的苹果放在膝盖上,手指伸展是
B'Against心血管疾病和各种人群中的全因死亡率[4,6,7]。因此,由于人口寿命增加的相关性,CF的连续测量可以被视为生命体征,因此,这应该是公共卫生的优先事项[8];但是,CF的定义和评估方式是矛盾的[9 \ XE2 \ x80 \ x93 11]。CF,作为在心肺运动测试(CPET)期间获得的最大有氧功率指数[11 \ XE2 \ X80 \ X93 13]。_ vo 2 max分别反映了肺,心血管和代谢系统分别捕获,运输和利用氧气的最大容量,该系统直接受CF的影响[13,14]。但是,CPET期间的_ VO 2最大测量需要训练有素的专业人员和昂贵的设备[15 \ XE2 \ X80 \ X93 17],并且很少用作一般人群中的预防工具。因此,在CPET期间由_ VO 2 MAX评估的CF均不能为所有人群提供,并且无法连续获得。因此,考虑到执行CPET的困难,但是鉴于评估心血管健身的高临床价值,需要进行连续评估CF的新方法。在无监督的日常生活活动(ADL)的活动期间,如果在实验室外部进行的所有人口(ADL)[18],这些方法可能更现实,无障碍和可供所有人口访问。最近,在医学中使用了可解释的模型来更好地证明预测模型的决策[26]。可穿戴传感器和生命信号融合可能代表连续推断CF的独特可能性,从而允许将来使用该技术来预测NCD,尤其是心血管疾病[6,7]。此外,越来越多的研究结合了使用磨损和机器学习技术来监测NCD患者的使用,尤其是在心脏呼吸型领域[19,20]。实际上,来自可穿戴设备的纵向数据似乎包含足够的信息,可以预测来自Com-Plex机器学习算法的无监督ADL的健康志愿者[21 \ XE2 \ X80 \ X93 25]。然而,尽管可穿戴设备和机器学习之间存在着巨大的潜力,但仍然缺乏使用这些技术预测NCD患者的CF的证据,尤其是在糖尿病,慢性肺部疾病和心血管疾病中。此外,了解这些模型如何通过机器学习算法训练,可以将重要信号转换为_ VO 2 Max可能会提供有关志愿者之间CF差异的复杂机械见解。由于_ vo 2最大词语算法的复杂性,基于从可穿戴技术获得的功能[25],纵向生命信号的解释能力被转换为_ vo 2 max的纵向范围非常低[26] [26],因为对给定模型的解释性及其性能之间的预期折衷是可以预测的健康及其健康的折算[27]。在本文中,我们调查了Shapley来评估CF预测问题中特征的重要性。众所周知,可穿戴传感器对于可以与机器学习技术相关的连续生物数据采集很有用,例如随机森林回归,神经网络和支持向量回归机器可预测CF [21,25]。因此,理解这些模型还可能表明人类\ Xe2 \ x80 \ x9cblack box \ xe2 \ x80 \ x80 \ x9d生理系统如何与环境相互作用,近似这些复杂算法的解释能力,即我们在使用简单的方法中所体验的内容,例如在线性性回归模型中所体验的内容。Shapley添加说明(SHAP)是一种源自Cociational Game理论的宝贵方法,该方法可用于解释根据从生物学数据获得的监督机器学习方法构建的复杂模型[26,28]。其使用的主要动机依赖于(1)其成为模型不可知论的能力(即,与任何模型相关的解释方法,以提取有关预测过程的额外信息'
1 机器人工程系,2 生物医学工程系,3 心理学系,4 印度泰米尔纳德邦哥印拜陀卡伦亚理工学院,5 加拿大卡尔加里大学。doi:10.15199/48.2024.09.27 使用提升小波变换进行基于熵的特征提取以对 EEG 信号进行分类摘要。在脑机接口 (BCI) 领域,一个关键的障碍在于有效地对运动想象 (MI) 信号进行分类。已经开发了许多基于脑电图 (EEG) 信号的 MI 分类技术。所提出的系统通过提升小波变换 (LWT) 将 EEG 信号转换为各种表示。长短期记忆 (LSTM) 用于对每行中提取的特征向量进行分类。在 PhysioNet 数据库上评估了该方法的性能,特别是用于区分右手和左手想象移动。该策略使得 LWT 的 72 个小波族中的 19 个的准确率达到 100%。这种组合被证明是基于 BCI 的脑电图分析的高效工具,展示了其作为该领域资源丰富的解决方案的潜力。压力。 W obszarze interfejsu mózg-komputer (BCI) kluczową przeszkodą jest skuteczna klasyfikacja sygnałów obrazowania motorycznego (MI). Opracowano liczne techniki klasyfikacji MI na podstawie sygnału elektroencefalogramu (EEG)。 Proponowany 系统支持脑电图 (EEG) 和提升小波变换 (LWT) 的变换。 Pamięć długoterminowa 长短期记忆 (LSTM) 是一个简单的学习方法,可以帮助您快速记忆。 Wydajność tej 方法是在 PhysioNet 和 bazie danych PhysioNet 中开玩笑的大洋洲,并在 celu rozróżnienia ruchu obrazowania prawej 和 lewej ręki 中使用。策略 ta zapewnia 100% dokładność w 19 z 72 rodzin falek LWT。该组合包括脑电图分析和 BCI 分析,可提供潜在的潜力。 ( Ekstrakcja cech oparta na entropii do klasyfikacji sygnału EEG przy użyciu transacji falkowej Lifting Wavelet ) 关键词:脑机接口、EEG、提升小波变换、LSTM。功能:计算机交互、脑电图、提升小波变换、LSTM。简介 运动想象 (MI) 代表了实现脑机接口 (BCI) 的一种方法。通常,它使用脑电图 (EEG) 来捕捉大脑活动,这是一种非侵入式且易于应用的方法。建议利用支持向量机 (SVM) 来生成非线性决策边界。此外,还定义了特定的核函数来处理数据集缺乏线性可分性的情况 [1]。研究人员在各种应用中对基于运动想象的脑机接口 EEG 信号分类进行了大量研究 [2-7]。在 BCI 的背景下,公共空间模式 (CSP) 是经常使用的特征之一。Selim 等人 [8] 提出了一种结合吸引子元基因算法和 Bat 优化算法的混合方法。这种混合方法用于选择 CSP 的最优特征并同时增强 SVM 的参数。其他研究则探索了使用 CSP 滤波器来推导新的时间序列。作者 [9] 采用了带通滤波器 (BPF) 和独立成分分析 (ICA) 等预处理技术来消除噪音。在区分左拳和右拳动作时,显式和隐式 MI 方法的准确率分别达到了 81±8% 和 83±3%。此外,各种研究还提出了结合不同方法以提高整体性能。在 [10] 中,设计了一种用于二元类 MI 分类的融合程序。它采用互相关技术提取特征,并利用最小二乘 SVM (LS-SVM) 进行分类。通过 10CV 方法进行性能评估,并将结果与八种替代方法进行比较,结果显示显著提高了 7.4%。提取特征和执行分类的另一种重要方法是使用卷积神经网络 (CNN) [11]。通过将 LSTM 网络与空间 CNN 集成,可以增强 BCI 的性能。随后,获得一个特征向量获得了一个特征向量获得了一个特征向量