Guerau Fernandez。劳工部的副教授,负责巴塞罗那神圣胡安医院临床生物信息单位。教会的戴安娜。西班牙富士通基因组和健康的高级分析和人工智能主管。
大多数加拿大博物馆使用 CHIN 人文数据字典(或完全兼容版本)作为其元数据标准(定义有关其藏品记录的信息单位)。在 20 世纪 70 和 80 年代,加拿大各地的许多博物馆使用了一种通用的收藏管理系统,该系统基于 CHIN 数据字典并由 CHIN 的中央主机进行维护。因此,尽管现在收藏管理已经分散,但加拿大各地的元数据仍有很多相似之处。由于 RCIP 数据字典是博物馆最早的元数据标准之一,因此在制定其他标准时参考了它(并且可以轻松映射到其他标准),包括 CIDOC 信息类别。
• 量子比特,量子位:数字位的模拟,用原子、光子、离子、电子、超导电路等的状态(例如自旋、极化、位置等)表示的信息单位,可以同时表示多个值,通常被描述为双态系统(例如,可以是 1 和 )而不是二进制数字的 1 或 0) • 转导:- 域之间量子态的高保真传输,例如,在不同模态、媒体频率、功能设备之间转换量子信号 • 量子隐形传态:将量子信息从一个地方传输到另一个地方(“飞行量子比特”的路径) • 相干性/退相干性:量子态极其脆弱,在保持高保真状态的同时进行通信具有挑战性
在这方面,在过去几年中,已经对基于灯笼的单分子杂志(SMM)进行了深入研究,目的是针对分子水平的杂志稳定和较高密度存储应用的稳定。[5,12–19]缓慢的松弛时间,高磁矩和灯笼的可靠地面状态使其非常适合分子自旋的应用。[5,12,13]灯笼驱动的SMM方法的逻辑扩展将是包含灯笼的定期网络的工程,该网络可以充当主动磁性信息单位。在过去的几十年中,金属分子方案已成为一种强大的策略,用于设计嵌入金属元件的功能性网状材料。[20–22]这种合成范式也已经在表面上开发,能够设计2D金属 - 有机设计,主要采用过渡和碱金属。[23–25]
叠加 - 量子系统在测量之前能够同时处于多种状态的能力。 纠缠 - 这是一种现象,它解释了两个亚原子粒子如何不考虑距离而相互连接,以至于一个粒子的变化水平会反映在另一个粒子上。 干涉 - 亚原子粒子状态的波状叠加,会影响测量时这些粒子状态的概率。虽然纠缠是两个粒子之间的现象,但干涉是许多粒子相互环绕的结果。 量子比特 - 它是量子计算中的基本信息单位,在量子计算中扮演的角色与比特在传统计算中扮演的角色类似,但它们的行为非常不同。经典比特是二进制的,只能保存 0 或 1 的位置,但量子比特可以保存所有可能状态的叠加。可以使用多种方法将信号发送到量子比特,包括微波、激光和电压。 量子计算机组件 - 量子计算机有三个主要部分
最小的信息单位是比特,即二进制单位,其值为 0 或 1。在计算机科学中,这通常对应于对象的状态,即高或低,例如,单个像素的状态可以描述为开或关。换句话说,可以使用一个信息位来描述该像素的状态。此外,如果要抛硬币,只需要一个信息位来描述抛硬币的结果,0 可以表示反面,1 可以表示正面。下一节中将推导的贝肯斯坦边界是由雅各布·贝肯斯坦发现的,它提供了描述包含在半径为 𝑅 的球体中的物理系统所需的信息上限,直至量子水平。贝肯斯坦边界一直受到天体物理学家和宇宙学家的特别关注,最著名的是斯蒂芬·霍金,他发现描述黑洞所需的信息恰好等于贝肯斯坦边界。该项目从普朗克单位和哈勃常数的角度研究贝肯斯坦边界以及由此得出的结论。
自克劳德·香农(Claude Shannon)首次提出信息理论以来,信息科学在过去的七十年中导致了我们生活中的重大变化。它基于信息的量化作为区分二态状态的能力。基本信息单位是二进制数字,也称为位。这是区分0和1的两个状态的能力,并且是数字计算,信息处理和通信的基本原则。但是,所有传统信息科学均基于钻头行为的经典物理:在计算或通信中间的任何给定时间,给定的位只能占用两个可用值之一。出现一个自然的问题:鉴于经典物理学是量子物理学的一个子集(或者,量子物理学是具有对应原理的经典物理学的概括,量子物理学在“经典”限制中降低到经典物理学,如果我们利用量子物理学优势,我们可以在信息处理中做得更多吗?这个问题的答案被证明是一个响亮的“是”,开辟了量子信息科学的新领域。在本章中,我们将讨论利用原子进行量子计算。在下一章中,我们将讨论利用原子和光子进行量子通信。