信息失真:准备大量的深泡沫和过度逼真的AI生成的内容污染信息格局。它包括假新闻,个性化的虚假信息,对金融市场的操纵,甚至影响刑事司法系统。到2026年,Deepfakes可以构成在线内容的很大一部分,侵蚀公共信任对机构的信任,并推动两极分化和极端主义。当前的身份验证解决方案(如水印)是不可靠的,需要持续的更新以与不断发展的AI保持同步。
由于工业应用需要新的拓扑结构来满足更快的周期时间、更高的吞吐量、更宽的带宽和更小的系统架构,因此引入了实时以太网协议(例如 Ethernet/IP、EtherCAT、Profinet 等)以最大限度地减少延迟。然而,上述协议在实时系统中都包含菊花链架构。因此,需要对注入系统的外部噪声具有更高的容忍度和免疫力,以防止系统中的信息丢失。再举一个例子,如果在菊花链网络的早期阶段出现任何信息失真或链接断开,菊花链网络中的所有剩余阶段也会受到影响。例如,如果伺服电机连接到菊花链网络的每个阶段,则早期阶段的任何信号丢失都可能阻止剩余的伺服电机运行,直到从早期的网络阶段接收到命令。因此,工业应用中的 EMC 已成为以太网的关键性能标准。
卷积神经网络(CNNS),是最重要的深度学习网络,用于构想者视觉,已进行了一系列的发展和改进,以进行与图像相关的任务,例如对象识别,图像分类,语义细分等。然而,在自然语言处理(NLP)领域,基于注意力的新网络变速器对机器翻译产生了深远的影响,随后导致了基于注意的计算机视觉模型的繁荣。具有关注的最新模型已经显示出对计算机视觉任务的良好性能。例如,与当前的卷积神经网络的表现相比,自我注意力学会在不同位置的细分或单词之间的关系。受视觉转移(VIT)的启发,我们提出了一个简单的新型变压器体系结构模型,称为Flexible Transformer,该模型继承了基于注意力的架构的属性,并且对于任意大小的输入而言是灵活的。除了自我注意事项外,VIT中的输入没有预处理,例如调整大小或裁剪,但在不改变它们的情况下保持完整,这可能导致信息失真或信息丢失。在本文中,我们想介绍一个满足这些要求的新颖而简单的体系结构。与艺术品相比,我们的模型流程输入具有任意图像大小的输入,而没有任何预处理和预处理成本。此外,实验的结果表明,尽管资源有限,该模型仍可以以很高的精度提供良好的结果。,即使灵活变压器的结果不如视觉变压器的结果准确,但它们显示了具有可变大小图像的图像分类任务中具有高性能的模型的潜力。研究的重要性为处理深度学习任务中的原始图像打开了可能性。基于原始输入,如果对拟议的模型进行了优化并在大型数据集上进行了进一步培训,则可以获得良好准确性的可靠结果。