2018 年 9 月,OSTP 和美国国家科学技术委员会量子信息科学小组委员会发布了《量子信息科学国家战略概述》9,其中描述了政府在推进美国在量子信息科学领域领导地位方面的首要任务。该方法包括重点推进基础科学、发展劳动力、扩大与工业界的伙伴关系以及与国际合作伙伴的合作。OSTP 和国家量子协调办公室还发布了《美国量子网络战略愿景》10,为量子信息科学研究界提供了具体建议,以重点关注量子互联网研发活动。
磁响应软材料是下一代软机器人、假肢、手术工具和智能纺织品的有前途的构建模块。然而,迄今为止,制造具有极端长宽比的高度集成磁性纤维(可用作可操纵导管、内窥镜或功能性纺织品)仍然具有挑战性。本文提出了多材料热拉伸作为材料和加工平台,以实现数十米长的柔软、超可拉伸且高弹性的磁性纤维。展示了直径低至 300 μ m、长宽比为 10 5 的纤维,将纳米复合域与嵌入软弹性体基质中的铁磁微粒集成在一起。通过选择适当的填料含量,必须在磁化密度和机械刚度之间取得适当的平衡,展示了可承受 > 1000% 应变的纤维,它们可以被磁力驱动并举起高达自身重量 370 倍的重量。磁性纤维还可以集成其他功能,如微流体通道,并编织到传统纺织品中。研究表明,这种新型磁性纺织品可以清洗并承受极端的机械约束,并且在磁力驱动下可以折叠成任意形状,这为医疗纺织品和软磁系统领域的新奇机遇铺平了道路。
用于神经假体的有机电子器件 MJI Airaghi Leccardi 和 D. Ghezzi 美敦力神经工程主席,神经假体中心和生物工程研究所,洛桑联邦理工学院工程学院,日内瓦 1202,瑞士。电子邮件:diego.ghezzi@epfl.ch 神经假体旨在通过利用植入式和可穿戴设备的技术进步来恢复受损或丧失的神经和心理功能。神经接口等植入式设备的性能依赖于生物和机器之间的协同作用。如果缺乏这种协同作用,可能会出现许多不良后果,如排斥、感染或故障。柔软度、电化学行为、生物相容性和生物降解性等材料特性都会影响神经接口的可靠性。在这篇综述中,我们描述了现代聚合物基底和有机电极,它们提供了这些特性的最佳组合。它们在融合不同特性方面的多功能性源于对其分子结构和混合的可控性。与无机材料相比,有机材料对软组织的机械顺应性更佳,而共轭聚合物在与电解液的界面处也具有有利的电化学传输机制,涉及离子和电子电导率。因此,全聚合物神经接口将具有多种优势,包括低成本制造、更高的生物相容性、重量轻、透明性以及与绿色电子产品的亲和性。本综述还重点介绍了支持基于有机材料开发安全电子接口的材料策略,这些策略对各种应用的神经假体都有益。
c。当愈伤组织或外植体暴露于细胞分裂素的正确组合,有时是低的生长素浓度时,射击诱导开始形成。芽可能像植物或愈伤组织上的小芽一样出现。在此阶段,植物细胞开始分化为芽分生组织,这些分生组织成长为功能性芽。d。射击伸长一旦形成不定的芽,就需要将其拉长并发展成可行的植物。这通常涉及将新形成的芽转移到低细胞分裂素和高营养含量的培养基中。e。芽伸长后生根,将植物体转移到可能含有生长素的生根培养基中,以鼓励根部形成。在将植物性转移到土壤或适应外部条件之前,必须建立根。
Spintronics和量子信息科学是两种有前途的信息处理技术的有前途的候选人。这两个字段的组合使我们能够构建用于研究量子现象并实现多功能量子任务的固态平台。很长一段时间以来,由于经典磁化强度的独特特性(在旋转基质和量子位中)在量子信息科学中使用,这两个场的相交受到了经典磁化的不同特性的限制。在过去几年中,这种情况发生了巨大变化,因为使用镁质在编码和处理信息方面取得了显着进展。另一方面,在理解准粒子的纠缠以及设计高质量的量子和光子腔的量子腔处理方面的重大进展提供了物理平台,可以将镁质与量子系统整合在一起。从这些努力中,出现了高度的跨学科领域,它结合了Spintronics,Quantum Optics和量子信息科学。在这里,我们概述了有关镁质量子状态及其与成熟量子平台的杂交的最新发展。首先,我们回顾了镁和量子纠缠的基本概念,并讨论了镁量子的量子状态的产生和操纵,例如单木糖状态,挤压状态和量子多体状态,包括Bose-Einstein凝结以及由此产生的旋转超流体。最后,我们对量子镁质的一些挑战和机遇提出了前景。©2022作者。我们讨论了如何将宏伟的系统与量子平台进行集成和纠缠,包括腔光光子,超导量子台,氮气现象中心和声子,以进行相干信息传输和协作信息处理。这些杂种量子系统对非炎症物理学和平均时间对称性的含义,以及在量子记忆和高精度测量中的应用。由Elsevier B.V.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
在过去的二十年中,在原子,分子,光学科学和材料科学以及低温基础设施中取得的进步正在加速量子传感器和量子整合系统的发展,在某些情况下,正在为历史上难以置信的问题提供革命性的方法。量子传感器已经在某些高优先级NP程序中使用,例如中微子双β衰减,中微子质量测量,无菌 - 中性搜索,基本对称性的精确测试,永久性电动偶极力矩搜索,以及作为稀有和稀有和外来的过程的探针。他们在NP中的有针对性使用不断增长,并扩大该领域的研发,包括通过对国家实验室和大学的设施进行投资,至关重要。
and Quantum Technologies Instructor: Muhammad Sabieh Anwar TA: Abdullah Ijaz, Physics senior Year: 2022-2023 Office: 9-103A Email : sabieh@gmail.com Semester: Spring Office Hours: Category: Undergrad/Grad Course Code CS 5112 / EE 539 / PHY 612 Course Title: An Introduction to Quantum Information Science and Technologies Credit hours: 3 Website: https://physlab.org/讲座格式:检查RO门户或Zambeel。有关骚扰政策和荣誉法规,请参见此大纲的最后一部分。____________________________________________________________________________
UG信息科学智能分析ISE B.S. 艺术与科学11.0401信息科学/研究。 11UG信息科学智能分析ISE B.S.艺术与科学11.0401信息科学/研究。11
摘要:控制量子光脉冲的时间模式形状具有广泛的范围应用于量子信息科学和技术。技术来控制带宽,允许在时间和频域中移动,并执行模式 - 选择性束 - 分解器样转换。但是,目前没有方案可以在时间模式上执行目标多模统一转换。在这里,我们提出了一种实用方法,以实现时间模式的一般转变。从理论上讲,我们可以在时间和频域中使用一系列相位操作来执行时间模式上的任何统一转换。数值模拟表明,使用实验可行的规格可以以超过95%的保真度执行时间模式上的几个关键转换。
“如果我们想在量子计算方面取得进展并创造更具可持续性的电子产品,我们需要更长的激子寿命和不依赖电子电荷的新信息传输方式,”领导这项研究的亚历山德拉·兰扎拉 (Alessandra Lanzara) 表示。兰扎拉是能源部劳伦斯伯克利国家实验室 (Berkeley Lab) 的高级教职科学家和加州大学伯克利分校物理学教授。“在这里,我们利用拓扑材料的特性来制造一种寿命长且对无序性非常强大的激子。”