设计,优化和制造。数值技术,例如有限元分析,验收动力学,第一原理计算和多尺度建模,可以有效地预测机构属性并优化设计。与此同时,人工智能和大数据分析可以通过机器学习发现新材料和反向设计。智能手段与自适应控制系统相结合,实现了生产过程的自动化和实时优化,从而提高了制造效率和精度。尽管数据和计算成本不足,但随着技术的进步,材料科学却朝着更高的精度和自动化方向发展。
摘要 — 深度学习的出现大大加速了机器学习的发展。然而,边缘深度神经网络的部署受到其高内存和能耗要求的限制。随着新内存技术的出现,新兴的二值化神经网络 (BNN) 有望降低即将到来的机器学习硬件一代的能量影响,使机器学习能够在边缘设备上进行,并避免通过网络传输数据。在这项工作中,在介绍采用混合 CMOS - 氧化铪电阻存储器技术的实现后,我们提出了将 BNN 应用于心电图和脑电图等生物医学信号的策略,以保持准确度水平并降低内存要求。我们研究了二值化整个网络和仅二值化分类器部分时的内存-准确度权衡。我们还讨论了这些结果如何转化为 Imagenet 任务上面向边缘的 Mobilenet V1 神经网络。这项研究的最终目标是实现智能自主医疗设备。
尽管木质素长期以来被视为加工生物质以生产纸张、生物燃料和高价值化学品的障碍,但现在人们清楚地认识到,将木质素转化为燃料、化学品和材料是木质纤维素生物经济的关键要素。然而,木质素的预期应用可能需要优选的木质素组成和形式。为此,有效的木质素价值化需要整合植物生物学(提供最佳原料)和化学过程工程(提供高效的木质素转化)。我们对木质素生物合成理解的最新进展表明,木质素结构极其多样且具有可调性,而木质素精炼的同步发展已导致开发出几种与木质素组成无关的工艺。在这里,我们回顾了植物体内木质素设计和木质素加工之间的接口,并讨论了木质素价值化成为先进生物精炼特征所必需的进展。
循环经济是一个系统,该系统建议充分利用现有资源,从而大幅减少废物产生,使其重新融入生产链,提供环境、社会和经济效益。循环经济有可能提供 4.5 万亿美元的经济机会,减少废物、刺激创新和创造就业机会。因此,废物价值化被认为是促进循环经济的关键战略,并满足日益增长的市场需求,该市场专注于在生产链中优先使用二次原材料。尽管废物价值化实践的增加带来了诸多好处,但必须考虑到阻碍其实施和普及的现有障碍。已确定的行业实施废物价值化的主要障碍是:i) 废物的多样性,ii) 需要合格的专业人员来执行此功能,iii) 各种操作的环境许可,iv) 废物转化的初始和运营成本高,以及 v) 需要在商业和政治范围内提高认识并进行必要的文化变革,才能真正实现价值化。
摘要 虽然可以使用高效算法实现脑植入式神经尖峰分类,但是噪声的存在可能使得使用传统技术难以保持高性能分类。在本文中,我们首次探讨了使用部分二值化神经网络 (PBNN) 对神经尖峰特征向量进行分类。结果表明,与基于波形模板的方法相比,PBNN 可在各种数据集和噪声水平上提供稳健的尖峰分类。介绍了基于 PBNN 的尖峰分类系统在标准 180 nm CMOS 工艺中的 ASIC 实现。后布局和布线模拟结果表明,合成的 PBNN 在 24 kHz 下工作时仅消耗 1.8 V 电源下的 0.59 휇 W 功耗,占用 0.15 mm 2 的硅面积。结果表明,所设计的基于 PBNN 的脉冲分类系统不仅在各种噪声水平和数据集上提供与最先进的脉冲分类系统相当的精度,而且占用的硅面积更小,功耗更低。这使得 PBNN 成为实现可植入大脑的脉冲分类系统的可行替代方案。
摘要 — 深度学习的出现大大加速了机器学习的发展。然而,边缘深度神经网络的部署受到其高内存和能耗要求的限制。随着新内存技术的出现,新兴的二值化神经网络 (BNN) 有望降低即将到来的机器学习硬件一代的能量影响,使机器学习能够在边缘设备上进行,并避免通过网络传输数据。在这项工作中,在介绍采用混合 CMOS - 氧化铪电阻存储器技术的实现后,我们提出了将 BNN 应用于心电图和脑电图等生物医学信号的策略,以保持准确度水平并降低内存要求。我们研究了二值化整个网络和仅二值化分类器部分时的内存-准确度权衡。我们还讨论了这些结果如何转化为 Imagenet 任务上面向边缘的 Mobilenet V1 神经网络。这项研究的最终目标是实现智能自主医疗设备。
监测人脑活动对于了解大脑功能、预防精神疾病和改善生活质量具有巨大潜力。为此,EEG 系统必须从当今临床实践中经常使用的有线、固定和笨重的系统转变为提供高信号质量的智能可穿戴、无线和舒适的生活方式解决方案。可穿戴设备上的连续监测要求自动 EEG 分类算法既准确又轻量。这是我们在本文中的主要关注点。请注意,可穿戴设备的处理器很小且有限,与台式机和服务器处理器相比要慢得多。许多以前的算法都是基于经典信号处理技术 [1][2]。由于 EEG 信号特征在不同情况下和不同人之间存在显著差异,因此此类算法中使用的固定特征不足以准确区分所有人的不同类型的疾病。为了自动提取特征并提高脑信号分类准确性,最近提出了基于深度学习的算法,包括深度卷积神经网络 (CNN) 和循环神经网络 (RNN) [3][4]。用于序列学习的最流行和最有效的 RNN 模型之一是长短期记忆 (LSTM) [5]。LSTM 旨在对长程依赖关系进行建模,而 RNN 的记忆备份起着重要作用,因此它们比传统的 RNN 更准确、更有效。本文重点介绍基于 LSTM 循环神经网络的 EEG 分类算法。所提出的方法采用 RNN,因为 EEG 波形自然适合用这种类型的神经网络进行处理。与其他类型的神经网络相比,RNN 可以更有效地捕获序列数据中的时间依赖关系。然而,高分类准确率的代价是