监测人脑活动对于了解大脑功能、预防精神疾病和改善生活质量具有巨大潜力。为此,EEG 系统必须从当今临床实践中经常使用的有线、固定和笨重的系统转变为提供高信号质量的智能可穿戴、无线和舒适的生活方式解决方案。可穿戴设备上的连续监测要求自动 EEG 分类算法既准确又轻量。这是我们在本文中的主要关注点。请注意,可穿戴设备的处理器很小且有限,与台式机和服务器处理器相比要慢得多。许多以前的算法都是基于经典信号处理技术 [1][2]。由于 EEG 信号特征在不同情况下和不同人之间存在显著差异,因此此类算法中使用的固定特征不足以准确区分所有人的不同类型的疾病。为了自动提取特征并提高脑信号分类准确性,最近提出了基于深度学习的算法,包括深度卷积神经网络 (CNN) 和循环神经网络 (RNN) [3][4]。用于序列学习的最流行和最有效的 RNN 模型之一是长短期记忆 (LSTM) [5]。LSTM 旨在对长程依赖关系进行建模,而 RNN 的记忆备份起着重要作用,因此它们比传统的 RNN 更准确、更有效。本文重点介绍基于 LSTM 循环神经网络的 EEG 分类算法。所提出的方法采用 RNN,因为 EEG 波形自然适合用这种类型的神经网络进行处理。与其他类型的神经网络相比,RNN 可以更有效地捕获序列数据中的时间依赖关系。然而,高分类准确率的代价是
主要关键词