在本文中,我们提出了一种预测事件发生时间的新模型:威布尔事件时间 RNN。这是一个用于预测下一个事件发生时间的时间序列的简单框架,适用于我们遇到连续或离散时间、右删失、重复事件、时间模式、随时间变化的协变量或不同长度的时间序列中的任何一个或所有问题。所有这些问题在客户流失、剩余使用寿命、故障、尖峰序列和事件预测中经常遇到。所提出的模型估计下一个事件发生时间的分布具有离散或连续威布尔分布,其参数是递归神经网络的输出。该模型使用生存分析中常用的特殊目标函数(删失数据的对数似然损失)进行训练。威布尔分布足够简单,可以避免稀疏性,并且可以轻松进行正则化以避免过度拟合,但仍然具有足够的表现力来编码诸如增加、平稳或减少风险之类的概念,并且如果允许的话可以收敛到点估计。预测的威布尔参数可用于预测下一个事件发生时间的预期值和分位数。它还会导致未来风险的自然 2d 嵌入,可用于监测和探索性分析。我们使用一个通用的删失数据框架来描述 WTTE-RNN,该框架可以轻松地与其他分布一起扩展并适用于多变量预测。我们表明,常见的比例风险模型和威布尔加速故障时间模型是 WTTE-RNN 的特殊情况。对具有不同程度删失和时间分辨率的模拟数据评估了所提出的模型。我们将它与二元固定窗口预测模型和处理删失数据的简单方法进行了比较。该模型优于简单方法,并且被发现具有许多优点和与二元固定窗口 RNN 相当的性能,而无需指定窗口大小和在更多数据上训练的能力。将 CMAPSS 数据集应用于模拟喷气发动机的 PHM 运行至故障得到了有希望的结果。
主要关键词