MTSC 62460 液晶材料科学 2 学分(与 MTSC 72460 合并)让学生熟悉液晶科学的基本化学概念。这些概念包括液晶分子的结构和性质、化学不相容分子链段的可混合性规则和微观偏析、芳香族化合物(包括杂环和氟化芳族化合物)的物理和电子性质、脂肪族和全氟烃的性质、不饱和性和手性。本课程后面部分涵盖的其他方面涉及液晶设备中使用的辅助材料和新材料,例如聚合物、碳纳米材料、金属和半导体纳米颗粒以及光响应有机材料。先决条件:研究生学位。课程类型:讲座学时:2 讲座成绩模式:标准字母
电火花沉积 (ESD) 技术已用于在 9Cr 还原活化钢上涂覆铁铝化物涂层,该钢是用于聚变反应堆测试包层模块的结构材料。在 X 射线衍射技术、光学显微镜、扫描电子显微镜和纳米压痕硬度测量的支持下,对铝化物涂层以及界面区域进行了相位识别和微观结构分析。微观结构检查表明,通过 ESD 工艺处理的钢的近界面微观结构发生了显著变化。涂层/基材界面的基材侧由可能具有准非晶性质的软区和该界面下方的 M 23 C 6 型碳化物偏析富集区组成。然而,涂层显示出广泛的裂纹缺陷,需要将其去除才能可靠地评估其作为包层应用的阻挡层的适用性。
本文讨论了增材制造合金 718 在增材制造 (AM) 工艺和随后常用的后热处理过程中的相变方面。为此,我们采用了基本理论原理、热力学和动力学建模以及现有文献数据。我们考虑了两种不同的 AM 工艺,即激光定向能量沉积和电子束粉末床熔合。首先研究了合金 718 在凝固和固态过程中相形成的一般方面,然后详细讨论了这两个工艺和随后的标准后热处理过程中的相变。我们考虑了冷却速率、热梯度和热循环对 AM 工艺过程中合金 718 相变的影响。特别注意说明凝固过程中的偏析成分如何影响合金 718 中的相变。本研究提供的信息将有助于更好地理解合金 718 718 AM 中的整体工艺-结构-性能关系。
密度并促进锂离子在电极之间的传输,从而降低降解和故障率。2 多孔电极结构以及电极涂层的物理、机械和电化学性能对于保持 LIBs 的良好一致性极为重要。电极的物理化学性质由混合、涂层,最重要的是干燥和随后的压延工艺控制,而这又与干燥过程 (DP) 期间的各种参数/变量有关。3 – 5 三阶段干燥机制如图 1 所示。众所周知,温度在 DP 中起着重要作用,是影响干燥速率的关键参数。例如,高温会导致粘合剂迁移(通常迁移到上部自由表面),从而降低涂层和集流体 (CC) 之间的粘合强度。这可能导致涂层与 CC 分层、电极收缩和涂层成分偏析; 7 – 10 这反过来又会通过较差的粘附性和内聚性增加电极的内阻 7,11 并降低电池容量。12
采用定向能量沉积技术在用于硬面堆焊的热作工具钢基材上沉积了具有不同层数的冷作工具钢。本研究涉及了覆层工具钢中的缺陷和微观结构。在沉积区发现了包括孔隙和裂纹在内的缺陷,其数量随着沉积高度或层数的增加而增加。大的不规则孔隙主要位于沉积层的下部区域。此类孔隙的形成归因于合金元素在孔隙表面的偏析和热量输入不足。非平衡共晶微观结构是孔隙邻近区域的特征。另一方面,开裂往往发生在沉积层的上部。确定了导致开裂的两个重要因素。第一个是微观结构梯度,当从底部移动到顶部沉积层时,微观结构梯度从细胞状树枝状晶变为柱状树枝状晶。其次,根据Thermocalc软件的模拟,沉积的冷作工具钢表现出相对较大的凝固温度范围,从而对热裂纹具有很高的敏感性。
1 引言 镍基高温合金具有优异的高温力学性能、高抗蠕变和疲劳性能以及非常好的耐腐蚀性能,被广泛应用于现代航空发动机和燃气轮机的涡轮叶片。镍基高温合金在恶劣条件下长期服役的性能,很大程度上取决于合金元素、合金浓度和强化相的形态。在工业实践中,镍基高温合金 René N5 在完全热处理状态下使用。固溶处理可使微观结构部分均质化,随后的时效可获得高体积分数的立方体状 γ′ 沉淀物。因此,获取更多有关铸态高温合金微观结构和性能的信息对于正确设计和控制后续热处理至关重要。枝晶间和枝晶间元素的凝固偏析会诱发非平衡相的形成,如碳化物、共晶相或其他低熔点相,这些相应在均质化过程中溶解[1-3]。
基于金属卤化物钙钛矿的串联太阳能电池有望实现超越单结太阳能电池理论极限的功率转换效率。然而,克服宽带隙钙钛矿太阳能电池中存在的显著开路电压不足仍然是实现高效稳定的钙钛矿串联电池的主要障碍。本文报道了一种通过氯化物添加剂设计钙钛矿结晶途径来克服 1.8 eV 钙钛矿太阳能电池挑战的整体方法。结合使用自组装单层作为空穴传输层,实现了 1.25 V 的开路电压和 17.0% 的功率转换效率。阐明了甲基氯化铵添加的关键作用,即促进富含氯化物的中间相的生长,从而引导所需立方钙钛矿相的结晶并诱导更有效的卤化物均质化。形成的 1.8 eV 钙钛矿表现出抑制卤化物偏析和改善的光电性能。
摘要:我们提出了一种自下而上的成功方法,设计了一种通用的等离子体增强原子层沉积 (PEALD) 超循环配方,以在 150°C 的相对低温下生长具有可调成分的高质量铟镓锌氧化物 (IGZO) 薄膜。原位实时椭圆偏振表征与非原位互补技术相结合,已用于优化薄膜的沉积工艺和质量,方法是识别和解决生长挑战,例如氧化程度、成核延迟或元素组成。开发的超循环方法通过调整超循环过程中的子循环比,可以轻松控制目标成分。与其他产生非晶态薄膜的低温沉积技术相比,我们在 150°C 下的 PEALD-IGZO 工艺可产生近乎非晶态的纳米晶态薄膜。通过超循环 PEALD 方法在低温下制备 IGZO 薄膜可以控制厚度、成分和电性能,同时防止热诱导偏析。关键词:IGZO、PEALD、超循环、XPS 深度剖析、电流密度
本研究调查了通过激光粉末床熔合 (L-PBF) 和激光粉末定向能量沉积 (LP-DED) 制造的 Haynes 230 的微观结构和室温力学性能。L-PBF 和 LP-DED 样品均经过类似的多步热处理 (HT):应力消除 (1066°C,持续 1.5 小时),然后进行热等静压 (1163°C 和 103 MPa,持续 3 小时) 和固溶退火 (1177°C,持续 3 小时)。采用扫描电子显微镜进行微观结构分析。进行室温单轴拉伸试验以评估力学性能。L-PBF 和 LP-DED 样品在 HT 后的微观结构变化和拉伸结果具有可比性。在高温下,非热处理条件下观察到的微观偏析和树枝状微观结构几乎完全溶解,并且在 L-PBF 和 LP-DED 样品中的晶粒内部和晶粒边界内形成了碳化物相 (M 6 C/M 23 C 6 )。最后,研究了拉伸载荷下的失效机制,并通过断口分析进行了比较。关键词:增材制造、Haynes 230、激光粉末床熔合、激光粉末定向能量沉积、拉伸性能。
高熵合金 (HEA) 具有几乎无限数量的可能成分,引起了材料科学的广泛关注。除了耐磨和耐腐蚀涂层之外,它们作为可调电催化剂的应用最近也成为关注的焦点。另一方面,HEA 表面的基本特性,如原子和电子结构、表面偏析和扩散以及 HEA 表面的吸附,却鲜有探索。研究的缺乏是由于单晶样品的可用性有限。在本研究中,报道了面心立方 (fcc) CoCrFeNi 薄膜在 MgO(100) 上的外延生长。通过 X 射线衍射 (XRD)、能量色散 X 射线光谱 (EDX) 和透射电子显微镜 (TEM) 对其表征表明,具有均匀且接近等摩尔元素组成的层沿 [100] 方向取向并与它们形成突变界面的基材对齐。采用 X 射线光电子能谱 (XPS)、低能电子衍射 (LEED) 和角分辨光电子能谱研究 CoCrFeNi(100) 的化学成分和原子及电子结构。结果表明,外延生长的 HEA 膜有可能填补样品间隙,从而可以对整个成分空间内明确定义的 HEA 表面的性质和过程进行基础研究。