由于脑瘫,认知障碍和疲劳而导致的复杂残疾和流动性障碍患者[8]。例如,帕金森氏病的患者通常缺乏因感知障碍而操纵EPW的认知和身体技能。对65位临床医生的一项研究报告说,由于感觉障碍,流动性受损或认知缺陷,其患者中有10%至40%无法配备EPW。这些障碍使得用当前的控制功能安全操作轮椅非常困难[9]。因此,那些不能独立和安全地操纵EPW的人必须坐在手动轮椅上,并由照料者推动。为了解决这些问题,学者改善了三个主要领域的EPW设计:辅助技术力学,物理接口和用户和轮椅之间的功率共享控制[10] [11]。
在役声发射 (AE) 监测能够对主要结构细节区域进行全局监测,以便尽早发现活动裂纹和损伤演变。AE 源严重程度是缺陷严重程度和相关结构风险的量度,从而减少了基于传统检查和建模方法的结构评估中的当前不确定性。当与应变监测和断裂力学分析的最新发展相结合时,它是一种用于疲劳裂纹检测和全寿命损伤评估的强大工具,具有提高平台可用性的潜力。本文概述了金属中稳定疲劳裂纹扩展的底层物理原理以及相关微断裂事件产生的声发射。给出了在役船体结构细节全局 AE 监测的示例。描述了用于建模疲劳裂纹扩展和相关声发射的新型分析软件,该软件结合了我们对原子尺度断裂力学理解的最新发展。用于检测海洋钢结构疲劳损伤的 AE 传感频带通常在 50 到 300 kHz 之间,具体取决于背景噪声。最大可接受缺陷尺寸定义了所需的 AE“可检测性”。可检测性取决于裂纹扩展步骤的大小和速率,这决定了传感器间距和监测持续时间,以实现可靠的检测、定位和评估目的。疲劳损伤评估和裂纹寿命预测的重要附加信息是所关注结构细节中关键位置的标称循环应变。此裂纹寿命预测与 AE 一起提供了船舶经历的结构疲劳响应曲线。了解与测量的 AE 相关的操作和环境概况将为结构生命周期管理提供基础。作为 USCG VALID 项目的一部分,给出了“USCGC BERTHOLF”上潜在疲劳敏感结构细节的临时结果。概述了在英国海军舰艇上的类似更大规模应用。
摘要:结构健康监测被认为是提高航空安全性和降低运营成本的可行解决方案,它可以根据机身的实际状况实现一种新颖的维护方法,从而降低定期检查带来的运营成本。然而,净收益几乎没有得到证明,而且目前还不清楚这种自主系统的实施如何影响飞机层面的性能。为了弥补这一差距,本文提出了一个系统分析,其中集成永久连接的传感器(用于诊断)的成本和重量对飞机主要性能的影响。通过多学科飞机分析框架,将飞机运行空重的增量与直接运营成本方面的可能收益进行比较,以确定盈亏平衡点。此外,该分析允许为结构健康监测系统建立设计指南,使飞机更安全,而不会产生任何经济损失。结果表明,运营成本低于参考飞机,最大起飞重量最多增加 4%。论文研究结果表明,从概念设计阶段开始就应考虑状态监测策略,因为这样可以最大限度地发挥这种创新技术的影响。然而,这涉及全新飞机的设计,而不是对现有飞机的改造。
传感器、数据采集和通信、信号分析和数据处理等领域技术的快速发展为 SHM 带来了巨大的好处。SHM 通常提供有关结构真实状况的可靠数据。桥梁、风电场、核电站、岩土结构、历史建筑和纪念碑、水坝、海上平台、管道、海洋结构、飞机、涡轮叶片等。可能是监测对象,仅举几例。监测可以是定期的或连续的、短期的或长期的、局部的或全局的,并且监测系统可以由几个传感器组成,多达数百个甚至数千个,具体取决于监测对象的要求。由于该主题的领域很多,本文主要从土木工程的角度提出和讨论该主题。
摘要:结构健康监测 (SHM) 正被航空航天业广泛采用,作为一种提高飞机结构安全性和可靠性并降低运营成本的方法。飞机结构上的内置传感器网络可以提供有关结构状况、损坏状态和/或服务环境的重要信息。在用于 SHM 的各种类型的换能器中,压电材料被广泛使用,因为它们可以利用压电效应用作执行器或传感器,反之亦然。本文简要概述了过去二十年来为飞机应用开发的基于压电换能器的 SHM 系统技术。然后介绍了结构健康监测系统在飞机应用中的实际实施和使用要求。讨论了解决一些实际问题的最新技术,例如传感器网络集成、大型结构的可扩展性、环境条件的可靠性和影响、稳健的损伤检测和量化。还讨论了 SHM 技术的发展趋势。
摘要:随着复合材料在飞机上的应用越来越多,复合材料航空航天结构的结构健康监测 (SHM) 领域的进步取得了许多新的成功贡献。然而,其应用在航空工业的运营条件下仍然并不常见,主要是由于研究重点和应用之间的差距,这限制了向改进的飞机维护策略(如基于条件的维护 (CBM))的转变。在本文中,我们确定并强调了复合材料飞机结构 SHM 领域成熟的两个关键方面:(1) 需要对飞机结构健康管理进行整体损伤评估的飞机维护工程师,以及 (2) 将 SHM 应用升级到实际服役条件下的复合飞机结构。多传感器数据融合概念可以帮助解决这些问题,我们阐述了它的好处、机遇和挑战。此外,为了演示目的,我们展示了基于融合的 SHM 系统的概念设计研究,用于对代表性复合飞机机翼结构进行多级损伤监测。通过这种方式,我们展示了多传感器数据融合概念如何使社区受益,推动复合飞机结构的 SHM 领域向航空工业的 CBM 应用迈进。
摘要:从原始传感器数据中提取的诊断潜力健康指标 (HI) 是数据驱动的复合结构诊断和预测的重要特征。本文研究了从使用光纤布拉格光栅 (FBG) 和声发射 (AE) 数据获取的应变中开发的新损伤敏感特征是否适合用作 HI。对单条复合板进行了两次疲劳试验。在以冲击损伤或人工脱粘的形式引入初始损伤后,对面板进行恒定和可变振幅压缩-压缩疲劳试验。通过 FBG 和 AE 进行应变感应是两种有前途的结构健康监测 (SHM) 技术,用于监测损伤增长,并通过相控阵超声进一步验证。几个 FBG 被纳入特殊的 SMARTapes TM 中,这些 SMARTapes TM 沿着加强筋的脚粘合以测量应变场,而 AE 传感器则策略性地放置在面板的外皮上以记录声发射活动。从 FBG 和 AE 原始数据中提取了几种 HI,它们的行为有望用于复合材料结构在使用过程中的损伤监测。为了进一步评估 HI 的行为和适用性,在整个实验过程中使用相控阵相机在多个时间点进行测量,从而提供基于超声波的损伤评估。
由于信息和通信技术(如网络物理系统 (CPS)、5G 蜂窝技术和物联网 (IoT))的发展,在现代时期,基于物联网的极其智能和巧妙的用例有机会出现。由于物联网支持环境辅助生活 (AAL)、移动医疗 (mHealth) 和电子医疗 (eHealth),因此医疗保健就是一个具有重大社会影响的用例。人们将很大一部分收入用于健康。除了导致患者死亡外,传统医疗保健服务还容易出现延误、浪费时间和财务损失。当与物联网的智能和预测功能结合使用时,在家中、工作场所或医院定期进行远程患者监控 (RPM) 可以帮助有特殊需要的个人克服传统医疗设施带来的障碍。可穿戴技术、传感器网络和其他数字基础设施用于基于物联网的 RPM,可以作为即将发生的情况的预警系统,如果忽视或推迟护理,可能会导致严重的健康问题甚至患者死亡。医生可以通过集成物联网的可穿戴设备(生物传感器)实时接收患者生命体征。这样,医务人员就可以立即开始治疗患者。术语“RPM”指的是这种情况,它有可能减少等待时间、节省医疗费用并提高患者的舒适度和服务质量。为了实现具有数据分析功能的远程患者监控系统 (RPMS),本文旨在开发一个支持物联网 (IoT) 和人工智能 (AI) 的框架。我们实施了 RPM 进行数据收集,并提出了一种疾病诊断算法。我们的实验结果表明,我们的方法优于现有方法。
指标,例如冷却通道中推进剂的热分解。这一点与可重复使用运载火箭的故障模式调查密切相关; - 第二,通过传感器融合和机器学习分析健康监测数据
本论文讨论的另一个重要主题是 IGBT 模块的状态监测。为此,开发了一个功率循环测试台。选择 𝑉 𝐶𝐸(𝑜𝑛) 作为跟踪功率器件在整个循环测试过程中退化状态演变的参数。因此,构思并开发了一个在线 𝑉 𝐶𝐸(𝑜𝑛) 测量板。为了获得有关所应用循环协议的更多相关见解,开发了一种在线估计 IGBT 器件结温的策略,该策略基于卡尔曼滤波器的使用。该策略还能够通过分析热敏电参数来估计 IGBT 健康状态的退化程度。