在这项新研究中,科学家将理论模型与尖端实验相结合,在偶极超固体中创建并观察涡旋——这一壮举被证明极具挑战性。因斯布鲁克团队此前在 2021 年取得了突破,在铒原子超冷气体中创建了第一个长寿命二维超固体,这本身就是一项艰巨的任务。
螺旋自旋结构是磁性诱导的手性的表达式,纠缠了材料1-4中的偶极和磁性。最近发现的螺旋范德华多表情到超薄限制,在二维5,6中提高了大手性磁电相关的前景。但是,到目前为止,这些耦合的确切性质和大小尚不清楚。在这里,我们对exfoliated van der waals多效率的对映射结构域的动力学磁电耦合进行精确测量。我们使用集体电磁模式在共振中评估了这种相互作用,并使用超快光学探针套件捕获了其振荡对材料偶极和磁性阶的影响。我们的数据显示,在Terahertz频率上具有巨大的自然光活性,其特征在于电化和磁化成分之间的正交调制。第一原理的计算进一步表明,这些手性耦合源于非共线自旋纹理与相对论自旋 - 轨相互作用之间的协同作用,从而使晶格介导的效应具有实质性增强。我们的发现突出了相互交织的订单的潜力,使其在二维极限内启用独特的功能,并为以Terahertz速度运行的范德华磁电机设备的开发铺平了道路。
摘要:同一主链中具有差异性拓扑(高阶结构)结构域的一维纳米纤维的合成是现代超分子聚合物化学的挑战性主题之一。通过外部刺激对超分子聚合物链的非均匀结构转化可以使这种纳米纤维制备。为了证明这种聚合后策略的可行性,我们从巴比妥酸盐单体中制备了光反应性的旋转折叠超折叠的超聚合物,该单体含有偶氮苯嵌入的刚性P-P-互轭支架。与以前的螺旋折叠超分子聚合物相比,由更灵活的偶氮苯单体组成,UV-Light诱导的新制备的螺旋折叠折叠的超分子聚合物的展开是不均匀的,发生了不均匀的,可提供折叠和无折叠域的拓扑块共聚物。这种块状共聚物的形成表明,光诱导的螺旋折叠结构的展开是从相对灵活的部分(例如末端或缺陷)启动的。在可见光照射后,随后衰老以恢复完全折叠的结构后,观察到了展开的结构域的自发重折叠。
摘要:由于其独特的光物理和电子特性,Pyrene及其类似物在近几十年来一直是广泛研究的主题。Pyrene及其衍生物形成准分子的倾向已在各个领域发现了广泛的应用。氮取代的pyrene衍生物显示出相似的光物理特性,但对它们而言,迄今为止尚未报道准分子发射。在这里,我们使用时间依赖性密度功能理论(TD-DFT)计算来研究pyrene和2-氮平的二聚体的低洼激子状态。确定准分子平衡结构,并使用糖尿病化程序披露了电荷转移(CT)激发和分子间相互作用的贡献。研究表明,两个分子形成的二聚体具有非常相似的激子状态模式,其中相关的CT贡献控制着准分子态的形成,以及L a / l b态倒置。与pyrene相比,2-余吡林中的偶极 - 偶极相互作用稳定了深色黯淡的准分子结构,并增加了转换为明亮的扭曲准分子的屏障。建议在氮取代的衍生物中的这些差异可能会影响准分子发射特性。
阀门腐蚀通常被认为是阀门金属材料在化学或电化学环境作用下的损坏。由于“腐蚀”发生在金属与周围环境的自发反应中,因此预防腐蚀的重点是如何将金属与周围环境隔离或使用更多的非金属合成材料。阀门腐蚀是全球许多行业面临的巨大问题,尤其是化工、石油和天然气行业。由于阀门使用了不同的金属,这些金属在接触水分时会发生反应,但海水会加剧这种反应,随后阀门会因电偶腐蚀而发生泄漏和故障。有些地方比其他地方更容易腐蚀。这可能是因为它们离海边更近。但恶劣的环境并不是阀门开始腐蚀的必要条件;最常见的腐蚀类型实际上是电偶腐蚀。阀门泄漏和故障的代价是巨大的。阀门腐蚀的另一个重要原因是金属发生故障或因化学反应而受损。我们熟悉的腐蚀是影响金属的腐蚀;空气中存在氧气,再加上一点水分,就足以使钢制品开始腐蚀,大多数情况下,其他环境因素会加速腐蚀过程。阀门腐蚀的原理主要包括
摘要:发现原子薄层的材料(例如石墨烯和过渡金属二分法生化剂)在二维中揭示了对新型基本物理和设备应用的独特探索。表征它们的晶体对称性和随后的电子性能是重要的,即实现这些降低的尺寸系统的全部潜力,从根本上讲,这从根本上决定了拓扑,手性和丰富的界面物理学。第二次谐波生成(SHG)是一种非线性光学效应,对晶体对称性和电子结构敏感,这被证明是捕获本质物理学的最强大但最简单的技术之一。另一方面,分层材料的2D性质具有多种外部刺激的物理性能,可以使其具有大量的可调性,这又为开发2D非线性光电应用程序铺平了道路。在这篇综述中,我们概述了使用第二次谐波生成光谱和显微镜检查的最新努力,以探测晶格结构和偶极性金属二甲硅烷和极性材料中的晶格结构和偶极极化。此外,涵盖了用于控制SHG的多种外部刺激,作为潜在的光电设备。我们以基于SHG光谱法的新兴磁磁和拓扑材料的探索方向的未来探索方向进行了结论。
摘要:金属卤化物钙钛矿量子阱 (PQW) 是表现出强束缚激子的量子和介电约束材料。激子跃迁偶极矩决定吸收强度并影响偶极介导能量转移中的阱间耦合,该过程影响 PQW 光电器件的性能。在这里,我们使用圆偏振激光脉冲的瞬态反射光谱来研究 n = 1、2 和 3 Ruddlesden − Popper PQW 的尺寸纯单晶中的光学斯塔克效应。从这些测量中,我们分别提取了 n = 1、2 和 3 的平面内跃迁偶极矩 11.1 (± 0.4)、9.6 (± 0.6) 和 13.0 (± 0.8) D。我们用密度泛函和多体微扰理论计算证实了实验结果,发现能带边缘轨道和激子波函数离域的性质取决于 PQW“奇偶”对称性。这解释了 n = 1 - 3 范围内跃迁偶极矩和 PQW 维数之间的非单调关系。
摘要 :腐败和病原微生物是影响食品安全和质量的最重要因素,而食品包装是食品在运输过程中抑制腐败和病原微生物最重要的技术环节。本研究旨在探讨不同商品包装条件下4 ℃贮藏火腿中生物胺(色胺、2-苯乙胺、腐胺、尸胺、组胺、酪胺、亚精胺、精胺)和致腐微生物的发展情况。实验包装系统分别为Pack-1(多层板+多层袋)、Pack-2(聚偶片+金属化袋)和Pack-3(聚偶片+铜袋)。结果表明,与另外两个包装系统相比,Pack-2的包装效率非常高。对主成分1(PC1)进行主成分分析(PCA)的结果是包装条件差异中最重要的变量,因为它解释了;包装1、包装2和包装3中PC1分别占总变异的71.7%、57.8%和83.5%。PC1与微生物分析和蛋白质含量变化(部分生物胺含量)呈正相关。PC1将指标与包装条件区分开来。PC1与微生物分析和蛋白质变化呈正相关。因此,尸胺、色胺和苯乙胺可作为火腿腐败的指标,其含量可能反映腐败程度。
摘要最近,由于在光学超材料,超敏感的等离激元纳米量学学,增强的非线性谐波产生等方面的吸引人的应用,血浆诱导的光学磁化吸引了人们对纳米光子学和等离子间学的研究兴趣。据我们所知,在这里,我们在实验和理论上首次观察到在超薄等离子体型纳米腔内的平面内磁性偶极共振,由二氧化硅涂层的金纳米球二聚体组成,并偶联到金薄膜。结合了多极膨胀和全波数值模拟,我们揭示了磁共振是由围绕球体二聚体和金膜包含的纳米厚的三角形区域循环的位移电流环引起的,从而导致腔隙间隙中的磁场强度极大地增强了磁场强度。在单粒子水平上使用极化分辨的深色场成像和光谱法,我们明确地“可视化”了诱导磁性模式的光谱响应和辐射极化,其特征与电偶极共振截然不同。我们进一步发现,磁共振频率高度取决于腔间隙厚度和纳米圈尺寸,从而可以直接从可见光到近红外区域进行简单的谐振调整,从而为磁共振增强的新途径增强了非线性光学光学和手性光学。