人们正在考虑将地下多孔含水层用作可再生能源压缩能量储存的储层。在这些系统中,在产量超过需求时注入气体,在需求高峰或产量不足时提取气体用于发电。目前运营的地下能源设施使用盐穴进行储存,使用空气作为工作气体。二氧化碳可能是更受欢迎的工作气体选择,因为在储存条件下,二氧化碳具有高压缩性,可以提高运营效率。然而,二氧化碳和盐水在储存区边界的相互作用会产生化学活性流体,从而导致矿物溶解和沉淀反应,并改变储存区的性质。本研究旨在了解在注入、储存和提取流动周期中使用二氧化碳作为工作气体的地球化学影响。这里,根据 Pittsfield 现场测试的时间表,基于 7 小时注入、11 小时提取和 6 小时储层关闭开发了反应性传输模拟,以评估储层的地球化学演化,运行寿命为 15 年。将存储系统中的演化与 12 小时注入和提取的连续循环系统进行比较。运行时间表研究的结果表明,矿物反应发生在域的入口处。此外,在两个系统中,在 CO 2 酸化盐水循环过程中,内部域的孔隙度得以保留。
电线粘结仍然是微电子包装中的主要互连技术。在过去的三年中,显而易见的是,从AU和Cu线粘合到Cu键合的显着趋势变得显而易见。这是由于一般努力降低诸如AU之类的原材料的制造成本和价格上涨所致。尽管在最近几十年中已经进行了许多研究,但大多数都集中在Au Ball/楔形上。这项研究的结果表明,键合参数,键合质量和可靠性密切相互联系。然而,与AU相比,Cu的不同材料特性(例如对氧化和硬度的依从性)意味着这些见解不能直接传递到Cu键合过程中。因此,有必要进一步研究。本文讨论了在各种键合参数下的键合界面形成的研究。Cu线在AlsICU0.5金属化上键合,并进行了键合参数优化以识别有用的参数组合。根据这种优化,使用低,中和高的美国功率和粘合力的参数组合组装不同的样品。通过剪切测试和HNO 3蚀刻进行了界面分析。在200 c退火168 h和1000 h的设备的横截面上分析了金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。 粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。金属相生长。在剪切测试期间,与低键合力和高美国势力的接触倾向于围墙。粘合力被证明对金属间的形成产生显着影响,而我们的功率仅施加了较小的影响。使用EDX分析退火样品的金属间相形成,并根据相形成动力学进行解释。确定了三个主要的金属间相。2010 Elsevier Ltd.保留所有权利。