摘要:钻孔热能存储系统是提高可再生能源工厂能源效率的潜在解决方案,但它们通常必须遵守严格的监管框架,主要是因为故意修改了地下土壤的自然状态。本文介绍了设计、测试和监测阶段,以建立一个钻孔热能存储 (BTES) 系统,该系统能够利用光伏热能 (PVT) 集热器产生的多余太阳热。案例研究是翻新意大利北部的一个养猪场,最多可容纳 2500 头幼猪。本研究旨在定义一种适合开发基于可再生能源的供暖系统的 BTES,确保环境保护和长期可持续性。改造措施包括安装双源热泵 (DSHP),以便在冬季回收夏季储存的太阳热。环境局的具体限制如下:最高储存温度为 35 ◦ C,授权拦截最大深度为 30 m 的最浅含水层,必须进行 BHE 灌浆,并制定持续测量和监测地下水热物理性质的策略。结果被用作输入,以优化 PVT、BTES 和 DSHP 集成系统的设计和安装。
本最终安全分析报告(编号 NUH-003,修订版 8,NRC 档案编号 72-1004)为标准化 NUHOMS® 轻水反应堆废核燃料组件储存系统提供了通用安全分析。该系统可在被动式独立废燃料储存设施 (ISFSI) 中安全地干燥储存废燃料,完全符合 IOCFR72 和 ANSI 57.9 的要求。相关的 NUHOMS®-24P 专题报告(编号 NUH-002,修订版 IA,NRC 项目编号 M-49)于 1989 年 4 月 21 日获得美国核管理委员会批准。原始 NUHOMS'-07P 专题报告(编号 NUH-001,修订版 IA,NRC 项目编号 M-39)于 1986 年 3 月 28 日获得美国核管理委员会批准。
罗马/卡夫里利亚(阿雷佐),2022 年 11 月 4 日 – Enel 集团和 Brenmiller Energy Ltd.(“Brenmiller”、“Brenmiller Energy”;TASE:BNRG,纳斯达克:BNRG)今天在托斯卡纳大区圣巴巴拉的卡夫里利亚市(阿雷佐省)启动了一个创新、可持续的能源存储系统,托斯卡纳大区区长 Eugenio Giani、卡夫里利亚市长 Leonardo Degl'Innocenti o Sanni、以色列驻意大利大使候任人 Alon Bar、Enel 绿色电力和热力发电负责人 Salvatore Bernabei、Enel 首席创新官 Ernesto Ciorra 和 Brenmiller Energy 董事长兼首席执行官 Avi Brenmiller 出席了启动仪式。该热能存储(“TES”)项目的目标是在圣巴巴拉建立一个创新的热能存储系统,该系统完全可持续且能够加速能源转型。TES 系统与现有发电厂的整合使 Enel 和 Brenmiller 能够在现场、具有挑战性的运行条件下大规模测试该技术。该系统可缩短发电厂的启动时间并提高负载变化速度,这是实现可再生能源高效利用的必要性能要求。该系统可用于以热量的形式储存可再生能源产生的多余能源,为工业客户提供脱碳服务,并将长期存储解决方案与可再生能源发电厂相结合。Brenmiller Energy 在以色列开发了这项技术并提供存储系统;Enel 将该系统与其圣巴巴拉发电厂整合在一起,并帮助验证其在真实环境中的性能。TES 技术采用两阶段充电和放电过程来提供热能。在充电阶段,圣巴巴拉工厂产生的蒸汽通过管道加热相邻的碎石;在放电阶段,累积的热量被释放以加热加压水并产生蒸汽用于发电。这种首创的 TES 系统可以在 550°C 左右的温度下储存高达 24MWh 的清洁热能,持续 5 小时,为发电厂提供关键的弹性。“灵活性和充分性是高效可靠电力系统的两个基本组成部分,通过存储可以越来越高效地提供这些电力,”Enel 绿色电力和热力发电负责人 Salvatore Bernabei 表示。“这次试验让我们能够验证长期存储领域的一系列创新和可持续技术,这将使可再生能源更多地融入电网。”
配备氢能储存系统 (HESS) 的发电厂,包括基于可再生能源 (RES) 的发电厂,是世界能源发展最有前景的领域之一 [1]。HESS 的关键要素是水电解器、氢气(有时是氧气)储存系统和燃料电池系统。水电解器利用一次电源的多余电能产生氢气(和氧气)。根据最终用户及其需求,生成的氢气可以以压缩形式、液化状态存储在各种载体上,例如金属氢化物、毛细管、微球和碳材料。不饱和烃的可逆加氢过程为安全储存和运输开辟了广阔的前景。一次电源电能的缺乏或缺失由燃料电池系统补偿,该系统将储存的氢气和氧气(来自氧气储存系统或空气)之间的反应化学能转换回电能。
能源转型正在推动以可再生能源系统为基础、结合能源储存系统或能源载体的当地能源社区的大规模传播,以实现对化石燃料的独立性并限制碳排放。事实上,可再生能源的可变性和间歇性使其不足以满足终端用户全天的电力需求;因此,研究能源储存系统,考虑到其季节性储存行为(例如,能源-电力耦合、自放电损失和最低充电状态),对于保证适当的能源覆盖至关重要。这项工作旨在确定由意大利中部一座 220 千瓦小型水力发电厂供电的当地能源社区的离网运行,使用电池储能系统或采用 Calliope 框架的氢能储能系统。结果表明,氢储存系统由 137 千瓦电解器、41 千瓦燃料电池和 5247 千克 H 2 储存器组成,而电池系统储存系统的容量为 280 兆瓦时。虽然电池存储具有更好的往返效率,但其自放电损耗和最低充电状态限制涉及斜率更陡的放电阶段,因此由于能量功率比高而需要大量的经济投资。
要充分发挥可再生能源的真正潜力,就需要一种能源储存系统。12 有许多技术可用于储存氢气。商业上最常见的氢气储存方法是通过压缩将氢气储存在高压气瓶中。13 由于氢气的密度低于其他燃料,因此这种氢气储存对气瓶的体积要求很大。14 储存氢气的其他方式包括金属氢化物和低温形式(参考文献 15)。本篇评论文章讨论了已报道的不同可再生制氢技术。它还讨论了净化技术和储存系统,并简要讨论了氢气的应用及其成本分析。它提供了重要的细节,可用于设计和开发不同的氢气生产、净化和储存技术。本评论将有助于有关氢气和氢经济的学术研究。
实现能源自给自足是偏远地区(尤其是岛屿)面临的主要挑战。最近,人们开发了各种技术来利用这些地区的可再生资源,以减少对化石燃料的依赖。这项研究重点关注复活节岛的情况,这是一个偏远地区的代表性例子,并探讨了三种完全可再生能源组合的利弊,以满足当地的需求。这项调查显示,虽然经典的光伏/电池组合可以满足需求,但安装需要超大,导致总发电量损失 73%。通过增加风力涡轮机和热解等替代能源生产来源,以及氢基储存等替代储存系统,能源损失可以减少 5 倍。这种更加多样化的能源结构使电价合理,达到 0.18 e /kWh,与目前当地价格相当。这项研究强调了互补能源生产和储存系统对有效满足岛屿能源需求的重要性。
• 能源会计与经济学 • 能源审计与仪表 • 电气系统 • 暖通空调系统 • 电机与驱动器 • 工业系统 • 建筑围护结构 • 热电联产系统与可再生能源 • 楼宇自动化系统 • 控制系统 • 热能储存系统 • 照明 • 锅炉与蒸汽系统 • 维护 • 建筑调试与测量与验证
摘要:热能储存系统在可再生能源的利用和开发中起着至关重要的作用。在过去的二十年里,单罐温跃层技术由于与传统的双罐储存系统相比具有更高的成本效益而受到广泛关注。本文重点阐明温跃层 TES 系统的性能指标以及不同影响因素的影响。我们收集了现有文献中所使用的各种性能指标,并将其分为三类:(1)直接反映储存热能的数量或质量的指标;(2)描述冷热地区热分层水平的指标;(3)表征温跃层罐内热流体动力学特征的指标。对这三类指标进行了详细的分析。此外,还系统讨论了相关的影响因素,包括传热流体的注入流量、工作温度、流量分配器和进出口位置。该工作提供的全面总结、详细分析和比较将为未来温跃层TES系统的研究提供重要的参考。