离开 SUNY 并转投其他雇主而必须加入 ERS/TRS 的 ORP 成员将无法在他们作为 ORP 成员的任何期间内在 ERS/TRS 中获得服务积分。 ERS/TRS 和 ORP 允许恢复等级。也就是说,如果您加入一个等级,离开州政府服务并在稍后返回,您将能够维持现有会员资格的等级,而不受您重新加入时有效的等级规定的保护。如果您从 ERS/TRS 转到 ORP,您将以当前(供款)等级加入 ORP。 1999 年 4 月 1 日和 2000 年 10 月 1 日在公共服务部门工作的 ERS/TRS 第 1 或第 2 级成员将每服务一年额外获得一个月的服务积分,最长可达 24 个月。由于 ORP 福利不以服务年限为基础,因此 ORP 中没有类似的规定。
摘要:立陶宛有一个地热异常,位于该国西南地区。此异常由位于立陶宛西部的两个主要地热复合物组成。第一个复合物的特征是pärnu -kemeri泥盆纪砂岩含水层,其表现出异常良好的流动性能。然而,该复合物中的储层温度最高可达45°C。第二络合物包括寒武纪砂岩储层。尽管这些寒武纪砂岩储层表现出高温,储层温度最高,达到96℃,但这些寒武纪砂岩储层的质量较低。这项研究重点介绍了高温寒武纪地热砂岩储层。该研究旨在对具有较高水生产率的现有碳氢化合物储层进行地质筛查。初始数据收集后,在机械框模型的帮助下采用数值建模来评估所选地点的地热潜力以进行商业开发。最终,该研究确定了前五名的站点,可以进一步为技术经济建模开发。
作者先前已经发表了各向同性和均匀储层的储层温度和压力曲线的计算。这些计算表明,热储存库需要少量的岩石质量,在厚度为100米的储层中,从注入井中从数十米半径处进行了数十米半径的质量。有了这个小的岩体质量体积,可以远离断裂,断层和夹杂物的位置。表明,对于某些储层,可以回收超过百分之九十的热量。地热电池能量存储的先前计算仅被认为是各向同性和均质的储层形成性能。然而,即使在沉积的沉积环境和叠加的构造学的岩石质量体积中,岩石渗透性也可能是各向异性的,并且具有不同性质的储层层。计算在这里考虑各向异性渗透率,并分层异质渗透率,即具有不同渗透率的水平层的地层。这种储层特性会产生非对称温度和压力剖面,这对于井布局和注入和生产的计划至关重要。关键字
纳米层压膜是由不同材料交替层组成的复合膜 [1]。这些多层纳米结构因能够调整其机械或物理性质以用于各种特定应用而备受关注。例如,在微电子领域,人们考虑将其用作介电绝缘体 [2,3]。事实上,人们现正致力于制备具有高介电常数和良好化学/热稳定性的多组分体系。特别是 Al 2 O 3 -HfO 2 纳米层压膜似乎是最有前途的体系,可用于硅基微电子器件 [4-9] 以及下一代电力电子器件 [10-15]。能够充分利用 Al 2 O 3 和 HfO 2 单一材料的最合适性质,促使人们研究将它们组合成层压体系。实际上,众所周知,Al 2 O 3 具有极其优异的化学稳定性和热稳定性、大的带隙(约 9 eV)、与不同半导体衬底的带偏移大,但其生长会形成高的氧化物陷阱电荷密度,但其介电常数值并不高(约 9)[16]。对于 HfO 2 介电氧化物,虽然可以实现相当高的介电常数值(约 25),但由于其在相对较低的温度(约 500°C)下从非晶态转变为单斜晶态,因此可靠性较低,并且由于其带隙很小(5.5 eV)所以漏电流密度高[16]。在这种情况下,由两种 Al 2 O 3 -HfO 2 高 k 氧化物组成的纳米层状结构是提高热稳定性和维持高介电常数值的有前途的解决方案。
能源存储可能允许使用各种可再生能源来进行电力生产,并且更接近消费者,在某些情况下仍然存在或在与电网相关的地区居住或工作。虽然某些存储技术已经在电力领域的各种应用中使用,例如可逆的液压工厂,一些大型电池技术,但其他存储技术仍处于早期阶段的发展,并且成本和缺乏竞争力(Serra; Orlando; Orlando;Mossé,2016年)。
是单位质量(dirac delta函数)的(瞬时)脉冲。它也以无量纲形式表示,𝑔𝜂 =𝑔ℎ0𝑊0。有趣的属性(命题1)是IRF与停留时间的概率密度函数相同,因为输入是脉冲函数。储层,线性:流出与存储成正比的储层。任何其他类型的存储 - 输出关系关系定义了非线性储备。储层,sublrinear:一个储层,其中流出与升高到功率的存储成正比𝑏<1。储层,超级线性:一个水库,其中流出与升高到功率𝑏> 1的存储成正比。停留时间(𝑾):粒子(分子)从进入其出口到其出口的时间持续时间。
储层计算是一种植根于经常性神经网络的时间序列处理的监督机器学习方法[1,2]。受到大脑机制的启发,许多相互连接的人工神经元过程输入输入并显示内部记忆。反复的神经网络随后适合于语音识别等时间任务[3,4],但以难以训练的代价。网络的所有权重需要在时间[5]中使用反向传播进行训练,这是一种耗时的,并非总是在融合[6]。不同,在储层计算(RC)中,仅训练输出层的权重以处理信息[7,8]。这些结构是由三个元素组成的:将数据注入系统中的输入层,由随机连接的大量神经元(或节点)组成的储层,以及一个外部(或读取)层以从储层中提取信息。在储层上的某些条件下,用简单的线性回归训练输出层就足够了[1,8]。在本文中,我们使用单个非线性节点(如[9]中)提供了储层协议的设计。尽管最近的作品已通过光学频率梳子的频率组件成功实现了储层和神经形态的组合[10-12],但我们在这里利用了时间特征,即脉冲基础,光频率梳子作为储层的节点。此外,使用相干性同伴检测,因此可以在场的相分量中编码信息,而不是其强度或弹性。我们表明,尽管有少量的节点和低可线性的节点,但我们的协议具有良好的性能,同时显示非线性记忆和预测可供使。我们的系统建立在可以使用光脉冲来构建尖峰储层的概念上[13,14],并且信息注入的相位编码可以在光子储层计算机中获得更好的性能[15,16]。基于光学的计算[17]可能能够给予对电子设备的速度或能源效率。
A a A = availability 可用性 Å = angstrom 埃 @ = at 1.单价 2.电子邮件地址账号和域名之间的分 隔符 A-A = analog-analog 模拟 - 模拟 A&B bit signaling A 和 B 位信令 A-B cut mixer 一级图像混合器 , A-B 图像混合器 A&B leads A 线和 B 线 A band A 波段 A Block 1.( 复式人工交换局 ) 甲交换台 , A 交换台 2.甲 盘 , A 盘 A carrier = alternate carrier 甲类电话公司 , 另一种电 话公司 A condition ( 起止式传输中的 )A 状态 , 起状态 , 启动空 号状态 A-D = analog-digital 模 ( 拟 ) —数 ( 字 ) A/D = analog-digital 模数转换 A/D coder 模数转换器 A/D conversion 模数转换 A/D converter 模 ( 拟 )/ 数 ( 字 ) 转换器 A interface A- 接口 A-law coding A 律编码 A/M = automatic/manual 自动 / 人工 A operator ( 复式人工交换局 ) 甲台话务员 A party 主叫方 , 主叫用户 A register A 寄存器 , 运算寄存器 A/Z 起 / 止脉冲 , 起 / 止脉冲比 , 空号 / 传号脉冲 , 空号 / 传 号脉冲比 AAA = authentication, authorization and accounting ( 移动通信 ) 鉴权 , 授权与计费 AAB = automatic alternative billing 自动更换记账 / automatic answerback 自动应答 AAL = ATM adaptation layer 异步转移传递模式适配层 , ATM 适配层 AAL1 ATM 适配层 1 AAL2 ATM 适配层 2 AAL3/4 ATM 适配层 3/4 AAL5 ATM 适配层 5 AARP Apple Talk 地址解析协议 abac 计算图表 , 列线图 , 诺模图 abac-parameter 四端网络参数 , 四端网络参量 abandon call 中途放弃呼叫 abandon pause 呼叫中途挂机 , 未接通暂停 abandoned call 放弃的呼叫 abandoned call attempt 放弃的试呼 abandoned traffic 损失业务 , 放弃的业务 abatement 1.抑制 , 消除 2.废料 Abbe condenser 阿贝聚光镜 Abbe number 阿贝数 , 色散系数 abbreviated address 缩位地址 , 缩写地址 abbreviated addressing 短缩寻址 abbreviated call 缩位呼叫 , 缩位拨号 , 简呼 abbreviated character 简化字符 abbreviated dialing 缩位拨号 abbreviated signal code 缩写信号码 abbreviative notation 缩写标记 ABD = abbreviated dialing 缩位拨号 abd technique 诱导技术 abduction 诱导 , 推断 , 推测 abductive reasoning 反绎推理 abductive technique 诱导技术 abecedarian 按顺序排列的 Abel transform 阿贝尔变换 Abelian group 阿贝尔群 abend 异常终止 , 异常结束 aberration 1.越轨 , 偏差 2.像差 , 色差 3.失常 , 畸变 4.光行差 aberration curve 像差曲线 aberration function 误差函数
摘要:碳捕获,利用和存储(CCUS)是减少碳排放并充当实现实验性碳中立的重要技术支柱的有效手段之一。CO 2增强的石油回收(CO 2 -EOR)代表了CO 2利用率的首要方法。co 2-eor代表有效开发低渗透性储层的一种有利的技术手段。然而,被称为直接注入CO 2的过程非常容易受到气体争夺的影响,从而减少了CO 2与低渗透性油基质之间的暴露时间和接触面积,从而使CO 2分子扩散有效地利用CO 2分子扩散。在本文中,提出了一项涉及在低渗透性储层中应用CO 2纳米泡系统应用的综合研究。使用Pickering乳液模板方法设计了带有Pro-CO 2属性的修饰纳米-SIO 2粒子,并用作CO 2纳米泡稳定剂。根据其温度抗性,耐油性,尺寸稳定性,界面特性和润湿性能,评估了CO 2纳米泡中用于低渗透性储层中的适用性。通过核心实验评估了CO 2纳米泡系统的增强的油回收率(EOR)效应。结果表明CO 2纳米泡系统可以抑制地层中的通道和重力重叠的现象。此外,系统可以改变润湿性,从而改善界面活动。该系统还可以提高CO 2在孔隙空间中取代原油或水的能力。此外,系统可以减少界面张力,从而扩大驱虫相流体的波效率。CO 2纳米泡系统可以利用其大小和高传质效率,以及其他优势。将气体注入到低渗透性储层中,可用于阻止高气体容量通道。注入的气体被迫进入低渗透性层或矩阵,核心模拟实验的结果表明恢复率为66.28%。纳米泡技术是本文的主题,具有提高CO 2 -EOR和地质隔离效率的重要实践意义,并提供了一种环保方法,作为较大CCUS -EOR的一部分。
Pharma Innovation Journal 2023; SP-12(12):1290-1295 ISSN(E):2277-7695 ISSN(P):2349-8242 NAAS评级:5.23 TPI 2023; SP-12(12):1290-1295©2023 TPI www.thepharmajournal.com接收到:03-11-2023接受:08-12-2023 Omkar Saahu渔业钓鱼Dholi钓鱼学院Dholi,Muzaffarpur,Muzaffarpur,Bhirapur,Bhirapur,Bhirapur,Bihhar Basan Basan Basan Basan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Vidyabhooshan晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Uma Date。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Lukesh Kumar Banjare晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div> Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度,通讯作者:Basant Singh晚。 div>Shri Punaram Nishad渔业学院Kawardha,Kabirdham,Chhattisgarh,印度