这项工作比较并量化了带有太阳能光伏(PV)的住宅建筑物的案例研究中三个电池系统损耗表示的年损失。两个损失表示形式考虑了不同的操作条件,并使用电池电力电子转换器(PEC)的测量性能,但使用恒定或依赖电流的内部电池电池电阻的不同。第三表示是无关紧要的,并使用(固定的)往返效率。工作使用负载和PV轮廓的次数测量,包括不同的PV和电池尺寸组合的结果。与具有当前依赖性内部电阻的情况相比,结果表明使用恒定电池内部电阻不足,并将年度损失差异量化为-38.6%。结果还表明了通过固定的往返效率对电池系统的效率进行建模的缺陷,其损失差异在-5%至17%之间,具体取决于情况。此外,突出显示了计算细胞损失的必要性,并且量化了其对转换器加载的依赖性。
到 2050 年实现净零排放目标需要大规模部署可再生能源和碳捕获技术。钙循环 (CaL) 是一种有前途的热化学储能 (TCES) 系统,可提高聚光太阳能发电厂 (CSP) 的可调度性。文献中发现的 CaL TCES 配置侧重于 CSP 电厂热电效率的稳态分析。在这项工作中,考虑到太阳能资源和电价的季节性和每日变化,对 CSP 电厂的 CaL TCES 系统的运行进行了经济优化。定义的方法确定了 CaL TCES 的运行性能,从而最大限度地提高 CSP 的经济收入以及一年中不同季节/时期代表日的能源生产和存储的每日概况。结果表明,可以获得良好的经济效益并运行 CSP + 存储以实现每日收入最大化。获得的结果对于系统的最终设计和定义存储设备所需的尺寸也很有用。
压缩空气储能 (CAES) 是众多储能选项之一,它可以以势能(压缩空气)的形式储存电能,并且可以部署在中央发电厂或配送中心附近。根据需求,可以通过使用涡轮膨胀机发电机膨胀储存的空气来释放储存的能量。该技术的一个吸引人的特点是过程相对简单——压缩机由可用电力驱动来压缩空气(充电),然后将空气储存在室内直到需要能量为止。在放电过程中,压缩空气通过涡轮膨胀机以产生电能回馈给电网。CAES 使其成为一个有吸引力的选择,其属性包括广泛的储能容量(从几兆瓦到几千兆瓦)、环保过程(尤其是在燃烧时不使用化石燃料)、长寿命和耐用性、低自放电(由于压力和温度损失)以及储存能量的成本低。该技术面临的一些挑战包括前期资本成本高、扩展步骤中需要加热、往返效率 (RTE) 较低、选址和许可挑战、难以识别和准备用于储存的天然洞穴、排放深度低以及响应时间较长。
本文测试了一类相对较新的热化学化合物的储热潜力。合成了 24 种不同的复盐水合硫酸盐水合物,通式为 AI 2 B II (SO 4 ) 2 ⋅ nH 2 O,并筛选了其作为热化学热电池材料的理想特性。材料根据以下标准进行测试:能量密度 ≥ 1.3 GJ/m 3 、脱水温度 ≤ 120 ◦ C 、在 P H2O ≤ 12 mbar 时 10 次循环能力。这 24 种盐的脱水温度在 55 到 198 ◦ C 之间,能量密度在 1.1 到 2.0 GJ/m 3 之间。 (NH 4 ) 2 Zn(SO 4 ) 2 ⋅ 6H 2 O 是唯一通过所有标准的材料,因此适合进一步研究。这种材料的能量密度为 1.78 GJ/m 3 ,经过一次脱水-水化循环后,脱水温度为 84 ◦ C ,并且可以进行至少 10 次循环而不会降低性能。还有五种其他感兴趣的盐满足三项标准中的两项。 (NH 4 ) 2 Ni(SO 4 ) 2 ⋅ 6H 2 O 的能量密度为 1.8 GJ/m 3 ,可循环 10 次,但脱水温度为 132 ◦ C。 (NH 4 ) 2 Fe (SO 4 ) 2 ⋅ 6H 2 O、(NH 4 ) 2 Mg(SO 4 ) 2 ⋅ 6H 2 O、Cs 2 Mg(SO 4 ) 2 ⋅ 6H 2 O 和 Cs 2 Ni(SO 4 ) 2 ⋅ 6H 2 O 的能量密度为 1.6 至 1.76 GJ/m 3 ,脱水温度低于 120 ◦ C,但它们需要 22.7 mbar 才能实现循环性。