能源存储可能允许使用各种可再生能源来进行电力生产,并且更接近消费者,在某些情况下仍然存在或在与电网相关的地区居住或工作。虽然某些存储技术已经在电力领域的各种应用中使用,例如可逆的液压工厂,一些大型电池技术,但其他存储技术仍处于早期阶段的发展,并且成本和缺乏竞争力(Serra; Orlando; Orlando;Mossé,2016年)。
“我们广泛且可互换地使用两个首字母缩略词 IoT 和 NoT(物联网)——NoT 和 IoT 之间的关系很微妙。IoT 是 NoT 的一个实例,更具体地说,IoT 将其‘事物’绑定到互联网。另一种类型的 NoT 可能是局域网 (LAN),其‘事物’均未连接到互联网。社交媒体网络、传感器网络和工业互联网都是 NoT 的变体。这种术语上的区分使得从不同的垂直和质量领域(例如,交通、医疗、金融、农业、安全关键、安保关键、性能关键、高保证等)中分离出用例变得容易。这很有用,因为没有单一的物联网,谈论将一个物联网与另一个物联网进行比较是没有意义的。”
储层存储单元是一种模块化的高密度解决方案,是工厂建造和测试以降低项目风险,缩短时间表和削减安装成本的。储层存储单元是使用GE的电池刀片设计构建的,以实现行业领先的能源密度和最小化的占地面积。ge的专有叶片保护单元积极平衡每个电池刀片的安全性,寿命和性能,将电池寿命延长高达15%,并将故障电流降低到5倍。模块化系统具有多个安装和电缆选项,包括PAD或码头,并配置为在项目寿命中使用所有天气功能和高效冷却系统在项目寿命中最大程度地减少运营和维护(O&M)费用。
针对空间碎片问题,本文设计了一种薄膜捕获袋系统。与空间绳网相比,薄膜捕获袋具有更高的柔性和可靠性。薄膜捕获袋系统中含有许多柔性结构,在运动过程中易发生较大的变形和振动,这些变形对服务航天器造成较大的扰动,需要建立准确的刚柔耦合动力学模型对扰动进行定量分析。首先,采用高阶绝对节点坐标公式建立薄膜动力学模型;其次,采用快速非奇异终端滑模控制器和固定时间膨胀观测器(FxESO)设计姿态跟踪控制律;最后,结合动力学和控制原理,建立了带有薄膜捕获袋系统的航天器虚拟样机。仿真结果表明,与ABAQUS有限元分析相比,高阶绝对节点坐标公式单元具有更好的收敛性;同时,该动力学模型模拟了航天器机动过程中大型柔性结构的变形和振动状态,FxESO可以估计并补偿复杂的扰动。快速非奇异终端滑模+FxESO控制律下的误差收敛速度比非奇异终端滑模+扩展观测器控制律更快,最终航天器姿态跟踪误差约为10 −4,证明了该控制器的有效性。
纳米材料提供解决农业后损失问题的解决方案。Slintec提供带有嵌入式纳米颗粒的活性包装材料,以减少农业收获后的损失。Slintec乙烯吸收袋降解乙烯并增加易腐物的保质期。
■ 简介 - 用起重机摄像机拍摄的图像 - 起重机摄像机安装在吊臂顶部并俯视地面,因此监视器上显示的人像非常小。如果操作员专注于驾驶,他们可能会忽视这一点,这是一个风险。为了充分发挥起重机摄像机的作用,我们利用基于人工智能的图像识别技术,识别起重机摄像机(监视器)上捕捉到的人和物体,并发出警报(监视器上的画面、警告音等)。开发了一种系统来检测
国枝武一 副教授 近藤小之(研究时):特任研究员 现:千叶工业大学先进工程学院生命科学系助理教授 田中章宏(研究时):博士生 现:日本学术振兴会遗传学研究所研究员 论文信息 期刊名称:PLOS Genetics 标题:使用 DIPA-CRISPR 在极端耐受性孤雌生殖缓步动物中单步生成纯合敲除/敲入个体 作者:近藤小之、田中章宏、国枝武一*(*:通讯作者) DOI:10.1371/journal.pgen.1011298 URL:https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1011298 研究资助本研究获得以下项目的资助:“缓步动物特异非结构域蛋白的发现与功能分析(项目编号:21H05279)”、“耐受极端环境的缓步动物抗性机制的动力学与新分子原理阐明(项目编号:20K20580)”、“高抗辐射缓步动物保护与修复新机制阐明(项目编号:20H04332)”。 名词解释(注1) 缓步动物 一种缓步动物,学名是 Ramazzottius varieornatus。从北海道札幌市的一座桥上分离出的单个个体衍生的遗传同质种群(YOKOZUNA-1谱系)已在实验室中进行了连续繁殖,并且由于其基因组已被破译,它被用于缓步动物的分子生物学研究。它们通过孤雌生殖进行繁殖,雌性单独产卵而不交配。它们具有一种特殊的耐干燥性,称为“干燥切开术”,这使它们能够承受几乎完全脱水,并且在这种状态下,它们能够抵抗各种极端压力。 (注2)目标基因:该技术允许研究人员只修改他们想要研究的特定基因。本研究以参与细胞内物质运输的蛋白质(转运蛋白)和海藻糖合成酶基因为靶基因,进行基因组改造。 (注3)敲除个体、敲入个体 通过人为地向目标基因中引入突变来破坏该基因功能的个体称为敲除个体。另一方面,研究人员设计的 DNA 序列被整合到基因组的目标位置的个体被称为敲入个体。
图3。miRNA储物柜的miRNA抑制作用的验证。(a)示意图表示miR-214对癌细胞EMT过程的影响。两个miRNA储物柜LC-1和LC-2有望通过阻止miR-214对EMT促进蛋白的RNF8的抑制作用来促进EMT。(b)IP-PCR分析确定miRNA储物储物在A549细胞中与靶microRNA的结合能力。启动设计的示意图表示,Hago2代表了表达质粒的标志标记的人AGO2,输入表示总DNA的等分试样。用于免疫沉淀的抗体在泳道上方指示。(c)RT-QPCR结果证明了用miR-214储物柜LC-C(作为对照)/LC-1/LC-1/LC-2或miR-214 Antagomir(AN-214)/Antagomir对照(ANANTAGOMIR对照)转染的A549细胞中miR-214的丰度。(d)用miR-214储物柜LC-C/LC-1/LC-2或Antagomir AN-214/AN-C转染的A549细胞中RNF8表达水平的蛋白质印迹。 (e)用miR-214储物柜LC-C/LC-1/LC-2或Antagomir AN-214/AN-C转染的A549细胞中迁移的Transwell分析。 (F)CCK8分析表明用miR-214储物柜LC-C/LC-1/LC-2转染的A549细胞的增殖。使用2-ΔΔCT方法计算了相对基因表达,并在每组内针对U6 snRNA的基因初始归一化。对照组(LC-C或AN-C)中每个基因的表达水平