遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
遗传信息的存储和转移[1,2]。 DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。 要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。 又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。 可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。 这些核苷酸是(突变)DNA 的底物遗传信息的存储和转移[1,2]。DNA甚至没有主要考虑,假设惰性化学性质将通过确保没有不希望的遗传指示改变来提供进化优势。要克服的主要障碍是四个具有有限功能的规范性障碍(大部分是沃森和克里克基料配对),在糖的2'位置下没有羟基。又花了十年的时间证明了dnazymes,单链的脱氧乙烯核苷酸(ODN),而没有体内对应物,也能够具有可以匹配酶的催化活性[3,4]。可以通过迭代且功能强大的SELEX方法在体外选择dnazymes的适体(能够结合催化特性但没有催化特性的寡核苷酸[5,6],依赖于使用未修饰的核苷5' - 三磷酸盐(DNTP)。这些核苷酸是(突变)DNA
CRISPR-Cas9 系统在人类致病菌中富集,并通过未知机制与细胞毒性相关。本文表明,空肠弯曲菌感染人类细胞后,会将其 Cas9 (CjeCas9) 核酸酶分泌到细胞质中。接下来,天然核定位信号使 CjeCas9 进入核,在那里它催化金属依赖性非特异性 DNA 切割,导致细胞死亡。与 CjeCas9 相比,化脓性链球菌的天然 Cas9 (SpyCas9) 更适合向导依赖性编辑。然而,在人类细胞中,天然 SpyCas9 仍可能造成一些 DNA 损伤,很可能是因为其 ssDNA 切割活性。这种副作用可以通过用适当的向导 RNA 饱和 SpyCas9 来完全预防,这对 CjeCas9 仅部分有效。我们得出结论,CjeCas9 在攻击人类细胞而不是病毒防御中发挥积极作用。此外,这些独特的催化特性可能使 CjeCas9 不太适合基因组编辑应用。
摘要:由严重急性呼吸综合征冠状病毒 2 引起的 COVID-19 大流行对全球公共卫生构成了巨大威胁,也对全世界产生了负面的社会经济影响。然而,尽管大流行现已得到控制,但考虑到疫苗开发所需的大量时间,这表明社会尚未准备好使用适用于各种类型病毒的分析方法,也未应用新的疗法来预防感染。基于纳米材料的诊断和治疗的使用可以为病毒检测和治疗提供必要的策略。金纳米粒子 (AuNPs) 是最常用于增强病毒检测的纳米材料,因为它们具有生物共轭性、高等离子体共振以及出色的电、光和催化特性。本综述概述了文献中关于使用 AuNPs 对呼吸道病毒发挥抗病毒活性的最新进展,分析技术如 AuNP 辅助聚合酶链反应、生物传感器(电化学、压电和光学)、横向流分析、核酸
摘要:由严重急性呼吸综合征冠状病毒 2 引起的 COVID-19 大流行对全球公共卫生构成了巨大威胁,也对全世界产生了负面的社会经济影响。然而,尽管大流行现已得到控制,但考虑到疫苗开发所需的大量时间,这表明社会尚未准备好使用适用于各种类型病毒的分析方法,也未应用新的疗法来预防感染。基于纳米材料的诊断和治疗的使用可以为病毒检测和治疗提供必要的策略。金纳米粒子 (AuNPs) 是最常用于增强病毒检测的纳米材料,因为它们具有生物共轭性、高等离子体共振以及出色的电、光和催化特性。本综述概述了文献中关于使用 AuNPs 对呼吸道病毒发挥抗病毒活性的最新进展,分析技术如 AuNP 辅助聚合酶链反应、生物传感器(电化学、压电和光学)、横向流分析、核酸
作为重要的金属氧化物,由于其在催化和光催化中具有许多有希望的特性,因此对二氧化钛二氧化钛进行了广泛研究。解剖酶TiO 2晶体的特性在很大程度上取决于暴露的外表面。已经做出了许多努力,以提高养殖化合物2的{001}方面的高反应方面的百分比,以增强其催化特性。本评论报告了设计和制造高反应性方面的最新进展通过各种策略,包括传统的蒸汽相外延过程,水热/溶液热方法,非溶液性酗酒方法和高温气体相反应。此外,重点介绍(001)表面,综述还涵盖了解剖酶TiO 2晶体各种高反应性方面的理论模拟的进步。最后,我们提供了一个摘要和一些观点,以了解这一新兴领域的未来研究的挑战和新方向。
化学和生物学的水污染物的复杂性需要有效且可行的治疗方法。在此,使用氮化碳催化剂的光催化臭氧处理有效地用于消除靶向化学污染物的混合物,以及在实际的次级含水量中的大肠杆菌细菌和人类多瘤病毒JC(JC病毒)。在使用尿素和三聚氰胺作为前体制备的催化剂中比较了去角质处理。物理治疗没有明显增强基于尿素的催化剂,而三聚氰胺基(36MCN)材料的结构的改善和MELEM异质结的形成增加了其催化特性。在两组污染物中,光催化的臭氧化系统都优于光解臭,尤其是在臭氧消耗方面。最好的催化剂36mcn,导致消除化学,细菌和病毒污染物所需的臭氧剂量下降57.5%,33.0%和29.0%。羟基自由基还显示为污染物消除的钥匙。臭氧的较高的自由基生产和分解是可能的迹象表明,石墨氮化碳光催化臭氧化的性能更好,这是有效的第三级废水替代方案。
doi:https://dx.doi.org/10.30919/es1178基于pt@r-go@mwcnts ternary nanocomposites修饰电极Y. Bakytkarim,bakytkarim,1,1,1,#S。tursynbolat,#ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 ZHBOLAT,2 Z.S. Mukatayeva,1,* ye。Tileuberdi,1 N.A.Shadin,1 ZH.M. Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。 电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。 使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。 由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。 在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。 此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。Shadin,1 ZH.M.Assirbayeva,1,* L. S. Wang,3 L.A. Zhussupova 4和Zhexenbek Toktarbay 5,6摘要这项工作报告了一种电化学传感器,用于对氯酸的高敏化电化学测定。电化学传感器主要是由PT@r-go@mwcnts三元纳米复合材料制成的,通过一锅方法制备,修饰的材料结构的特征是通过扫描电子显微镜(SEM)和能量分散性X射线光谱光谱(EDS)技术来表征。使用环状伏安法(CV)和差异脉冲伏安法(DPV)研究了PT@r-go@mwcnts/gce上氯化酸的电化学行为。由于PT@r-go@mwcnts纳米复合材料的出色电导率和催化特性,与裸露的GCE相比,PT@r- go@mwcnts/gce显示出更强的电化学响应信号,对氯酸。在pH 6.0处的0.1 M PBS缓冲溶液中,富集潜力为-0.1 V,富集时间为150 s,PT@R- GO@MWCNTS/GCE的线性范围用于检测氯化酸的0.005〜2 µm和2〜20 µm和2〜20 µm和2〜20 µm,并且检测极限为0.001。此外,该传感器还具有良好的选择性,可重复性和稳定性,并已成功用于检测真正的血清样品中的绿原酸。
光谱不活跃、电绝缘和化学惰性是广泛用来描述云母和绿泥石等层状硅酸盐矿物的形容词。本文通过展示来自五种块状云母和绿泥石片岩的液体剥离纳米片的水悬浮液,推翻了上述观点。通过透射电子和 X 射线光电子能谱以及电子衍射确认了纳米片的质量。通过拉曼光谱,可以观察到以前未报告过的尺寸和层相关光谱指纹。当通过紫外可见光谱分析高产悬浮液(≈ 1 mg mL − 1 )时,所有层状硅酸盐的带隙( E g )都从块体的 ≈ 7 eV 窄化到单层的 ≈ 4 eV。不同寻常的是,带隙与纳米片的面积 (A) 成反比,这是通过原子力显微镜测量的。由于未记录的量子限制效应,随着纳米片面积的增加,纳米片的电子特性向半导体行为 (带隙 ≈ 3 eV) 扩展。此外,模拟 X 射线衍射光谱表明,初始带隙变窄的根本原因是晶格弛豫。最后,由于其同构取代离子范围广泛,层状硅酸盐纳米片表现出显著的制氢催化特性。
摘要:本文的重点是基于石墨烯和天然聚合物(例如纤维素和壳聚糖)的导电纳米复合材料的开发。石墨烯是排列在蜂窝晶格中的单层碳原子,具有非凡的电气,机械和热性能,使其成为聚合物复合材料的吸引人填充物。但是,挑战在于有效地将石墨烯片分散在聚合物矩阵中。所介绍的工作探讨了将多糖链接枝到氧化石墨(氧化石墨烯)上的新策略,以改善其在纤维素和壳聚糖基质中的兼容性和分散性。将所得的复合材料与金或镍纳米颗粒掺杂,以进一步增强其电和催化特性。采用了详细的表征技术,包括光谱和微观方法,用于分析已发达的纳米复合材料的结构,形态和特性。论文分为三个主要部分:1)关于石墨烯,多糖及其生物复合材料的文献综述; 2)描述实验材料和方法; 3)对结果的科学讨论,以三个研究出版物的形式提出。研究结果表明,成功合成了具有提高兼容性和性能的导电纳米复合材料,为在电子,催化和电磁屏蔽等区域中应用这些可持续性和多功能材料开辟了新的途径。