硅传感器研发混合 SoI CMOS 单片 CCPD 演示器 CLICpix Cracov CLIPS (CLIC) ALICE 调查员 CLICTD Malta/Monopix ATLASpix(Mu3ePix) C3DP+CLICpix 传感器平面平面平面 HR-CMOS 标准 HR-CMOS 改进工艺 HV-CMOS 连接至读出电子元件凸块粘合 SoI SoI 单片单片单片 CC 带胶 ASIC 技术 (nm) 65 200 200 180(TJ) 180(TJ) 180(TJ)/150(LF) 180(AMS)/150(LF) 65 厚度 (µm) 50 / 200 300 / 500 100 / 500 100 50 / 100 100 60 50 间距/单元尺寸 (µm x µm) 25 x 25 30 x 30 20 x 20 28 x 28 30 x 300 36 x 36 40 x 130 25 x 25 命中分辨率 (µm) 9 / 3.5 5/2 4 4 12 7 时间分辨率 (ns) 6 < 10 5 7 最大 NIEL (1 MeV neq/cm2)/TID (Mrad) O(10
尺寸(W X H X D)37.3 cm x 47.7 cm x 53.3 cm重量28 kg电源(功率消耗)100-240 V AC,50/60 Hz样品容器幻灯片,微型室,35毫米,35毫米,6,12,24,24,24,24,24,96 75 NA,1毫米WD系统放大倍率10.3x传感器和像素尺寸CMOS,7百万像素,冷却温度-25°C,低噪声,量子效率70%以上,像素尺寸:4.5 µm x 4.5 µm,最大曝光时间为60分钟的像素大小:2200×2200像素,4.5 µm x 4.5 µm像素像素大小最大视野:1.4 mm x 0.95 mm x 0.95 mm分辨率限制环境控制功能选项:舞台顶室,混合气体控制器
GLT5009BSI 是一款背照式 (BSI)、时间延迟积分 (TDI)、电荷域 CMOS 图像传感器,像素大小为 5μm,有效分辨率为 9072。该传感器有两个感光带,256 个级和 32
数字乳房X光检查探测器 .......................。。。。。。。。。。。。。。。。。。。。。。。。.5 数字探测器技术。.....................。。。。。。。。。。。。。。。。。。。。。。。。...5 间接数字检测器 .............。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 个直接数字探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。数字探测器的 5 像素设计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 像素大小注意事项。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 视野要求。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。...7 款数字乳房 X 线摄影检测器正在开发中 ...................。。。。。。。。。。。。8
由于胶片摄像头被替换为数码相机,因此追求小像素大小进入亚微米尺度以满足高分辨率成像的需求是一个主要趋势。1,2图像传感器的像素大小的收缩(ISS)引发了严重的信噪问题,并带来了常规光学组件的挑战。3最近通过应用各种纳米光学效应,包括超普通变速器(EOT),4个金属纳米antennans,5 Fano共振,6个MIE共振,7和指导模式共振(GMR)来设计结构性色过滤器。8与基于材料吸收的常规染料颜色过滤器相比,结构颜色技术通过人工微/纳米结构实现光谱滤波,具有互补金属的优势 - 氧化物 - 氧化物 - 轴导剂(CMOS)过程兼容性,稳定性,稳定性和抑制空间颜色crosstalk。9尽管已经进行了彻底的研究以探索基本物理学,但10种高质量的材料11并优化了结构色技术的制造和集成方法12,但没有一个可以在光传输效率(〜90%)和颜色纯度方面击败染料色过滤器。13此外,大多数结构颜色过滤器都是
摘要:随着对沉浸式体验的需求的增长,显示器的大小和更高的分辨率越来越接近眼睛。但是,缩小像素发射器降低了强度,使其更难感知。电子纸利用环境光进行可见性,无论像素大小如何,都可以保持光学对比度,但无法实现高分辨率。我们显示了由WO 3纳米散件组成的大小至〜560 nm的电气可调节元像素,当显示大小与瞳孔直径匹配时,可以在视网膜上进行一对一的像素 - 示波器映射,我们将其称为视网膜电子纸。我们的技术还支持视频显示(25 Hz),高反射率(〜80%)和光学对比度(〜50%),这将有助于创建最终的虚拟现实显示。主要文本:从电影屏幕和电视到智能手机以及虚拟现实(VR)耳机,显示器逐渐越来越靠近人眼,具有较小的尺寸和更高的分辨率。随着展示技术的进步,出现了一个基本问题:显示大小和分辨率的最终限制是什么?如图1a,为了获得最沉浸和最佳的视觉体验,该显示应与人瞳孔的尺寸紧密匹配,每个像素与视网膜中的光感受器单元相对应。人类视网膜包含约1.2亿光感受器细胞。假设瞳孔直径为8毫米,理想的像素大小为〜650 nm,导致分辨率约为每英寸40,000像素(PPI)。随着像素尺寸收缩,主流发射显示器正在接近其物理极限。这个理论像素大小接近人眼的分辨率极限,代表了显示技术的最终边界,我们将其命名为“视网膜”显示。较小的像素尺寸降低了发射极尺寸,从而导致亮度显着下降,从而使它们越来越难以通过肉眼感知(1,2)。当前,市售的智能手机显示像素通常约为60×60μm²(〜450 ppi),比最终视网膜显示所需的理论尺寸大约10,000倍。已经在这个规模上,肉眼很难感知,尤其是在
放大倍数 81,000 81,000 电压 (kV) 300 300 电子曝光 (e – /Å 2 ) 54 54 散焦范围 (- μ m) 0.8 – 2.0 0.8 – 2.0 像素大小 (Å) 1.05 1.05 施加对称性 C1 C1 初始粒子图像 (数量) 3,021,295 2,664,830 最终粒子图像 (数量) 183,870 114,383 地图分辨率 (Å) 3.65 3.80 FSC 阈值 0.143 0.143 地图分辨率范围 (Å) 3.2 – ~20 3.3 – ~20
这项技术与 NOVO Professional Touch 软件相结合,使 NOVO DR 成为第一家仅使用一个探测器即可提供支持整个厚度范围 ISO 17636-2 B 级要求的 DR 系统的公司!• 75μm 像素大小 • 支持从 1mm 以下到 50mm 以上的钢材的 ISO 17636-2 B 级要求 • 由于噪音极低,所需的平均数(帧积分)减少 • 死区最小 - 有效区域从探测器底部开始为 3mm • 可快速拆卸、充电电池 • 无线和有线操作 • 可拆卸手柄
正射影像被广泛认为是各种专题制图应用的数据源;在欧盟 (EU),管理共同农业政策的信息系统现在通常基于数字正射影像覆盖,其标称几何质量为 1:10,000 地图比例尺当量和 1m 像素大小或更高 (Kay et al., 1997)。尽管如此,机载图像采集需要一定程度的访问,而这并不总是可行的,而所谓的“非常高分辨率”(VHR) 卫星传感器的可用性允许采集具有图像内容质量特征的数据,以满足农村地区或农业制图和监测的需求 (Petrie, 2002)。目前使用三种主要方法从 QuickBird 和 IKONOS 数据生成正射影像:严格的传感器模型(例如,Toutin 和 Cheng,2003)、使用地面控制点计算的有理多项式系数 (RPC) 方法或使用影像供应商提供的 RPC 信息。前两种