为了提高未来的农业生产,需要重大技术进步来提高作物的产量和单产。通过成簇的规律间隔短重复序列/CRISPR 相关蛋白 (CRISPR/Cas) 系统靶向基因的编码区已经很成熟,并能够快速产生无转基因植物,从而改善作物。CRISPR/Cas 系统的出现还使科学家能够实现顺式调控元件 (CRE) 编辑,从而设计内源性关键 CRE 来调节靶基因的表达。最近的全基因组关联研究已经确定了天然 CRE 变体的驯化以调节复杂的农学数量性状,并允许通过 CRISPR/Cas 系统对其进行工程改造。虽然工程植物 CRE 有利于驱动基因表达,但其实际应用仍存在许多限制。在这里,我们回顾了 CRE 编辑的当前进展,并提出了未来有效靶向 CRE 进行转录调控以改良作物的策略。
。CC-BY-NC-ND 4.0 国际许可证下可用(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2022 年 10 月 6 日发布。;https://doi.org/10.1101/2022.10.05.511030 doi:bioRxiv 预印本
这是一个美容装置。如果负责使用此工具的美容机构无法实施令人满意的操作计划,则将导致异常的仪器失败,并可能危害人类健康。目前,当用户请求时,公司将为电路图提供费用,并解释校准方法和其他信息,以帮助用户维修公司通过适当且合格的技术人员归类为用户提供用户的部分。
摘要 人们对利用超声 (US) 换能器进行非侵入性神经调节治疗,包括低强度经颅聚焦超声刺激 (tFUS) 的兴趣迅速增长。用于 tFUS 的最广泛展示的超声换能器是体压电换能器或电容式微机械换能器 (CMUT),它们需要高压激励才能工作。为了推动超声换能器向小型便携式设备的发展,以便大规模安全地进行 tFUS,人们对具有光束聚焦和控制能力的低压超声换能器阵列很感兴趣。这项工作介绍了使用 1.5 µ m 厚的 Pb(Zr 0.52 Ti 0.48)O3 薄膜(掺杂 2 mol% Nb)的 32 元件相控阵压电微机械超声换能器 (PMUT) 的设计方法、制造和特性。电极/压电/电极堆栈沉积在绝缘体上硅 (SOI) 晶片上,硅器件层厚度为 2 µ m,用作弯曲模式振动的被动弹性层。制造的 32 元件 PMUT 的中心频率为 1.4 MHz。演示了超声波束聚焦和控制(通过波束成形),其中阵列由 14.6 V 方波单极脉冲驱动。PMUT 在焦距为 20 mm 时产生的最大峰峰值聚焦声压输出为 0.44 MPa,轴向和横向分辨率分别为 9.2 mm 和 1 mm。最大压力相当于 1.29 W/cm 2 的空间峰值脉冲平均强度,适用于 tFUS 应用。
– 近期物理学研究最令人着迷的方面之一是人们熟悉的光学定律逐渐扩展到极高频的 X 射线,直到现在,光领域中几乎没有一种现象在 X 射线领域找不到平行。反射、折射、漫散射、偏振、衍射、发射和吸收光谱、光电效应,光的所有基本特性都被发现也是 X 射线的特性……
30 多年来,忆阻器一直是个谜,直到 2008 年 [ 8 ] HP 实验室的一组研究人员宣布成功实现第一个器件形式的忆阻器。这一最新发现吸引了众多科学家、工程师和研究人员的注意,他们纷纷探索忆阻器在分立和阵列配置中的更多可行应用及其器件技术。HP 忆阻器技术由厚度为 D 的氧化钛 (TiO 2 ) 薄膜双层和两个用作电极的铂 (Pt) 金属触点组成。TiO 2 的一部分掺杂了氧空位,因此变成 TiO 2-z,另一部分保持纯 TiO 2 。这些氧空位带正电,因此具有导电性,未掺杂的另一侧具有电阻特性,使得整个排列表现为半导体材料,见图 4。请注意,实际上带电掺杂剂沿着器件宽度散布,但是,其在一边的浓度与另一边的浓度相比可以忽略不计,从而导致两个不同的电阻区域。结构布置构成了两个串联连接的电阻 𝑅𝑅 𝑜𝑜𝑜𝑜 和 𝑅𝑅 𝑜𝑜𝑜𝑜𝑜𝑜。 𝑅𝑅 𝑜𝑜𝑜𝑜 电阻对应于宽度为 ( w ) 的掺杂区域(TiO 2-z 即高导电区域),而 𝑅𝑅 𝑜𝑜𝑜𝑜𝑜𝑜 电阻对应于宽度为 ( Dw ) 的未掺杂区域(TiO 2 即低导电区域),因此 𝑅𝑅 𝑜𝑜𝑜𝑜𝑜𝑜 ≫ 𝑅𝑅 𝑜𝑜𝑜𝑜 是两个电阻极限,分别表示器件的 OFF 和 ON 状态。掺杂区域和未掺杂区域之间的边界(用双向箭头表示)根据流动电流的方向或施加电压的极性来回移动。
放松复制起源和DNA解旋酶的负载是染色体复制的启动。在大肠杆菌中,最小起源oric包含一个双链放松元素(欠款)区域和结合起始蛋白DNAA的三个(左,中和右)区域。左/右区域带有一组DNAA结合序列,构成了左/右DNAA子复合物,而中间区域具有一个单个DNAA结合位点,该位点刺激了左/右DNAA亚复合物的锻炼。此外,群集元素(tattaaaaagaa)位于最小oric区域外。左DNAA子复合物促进了由于暴露TT [A/G] T(T)序列的放松,然后结合到左DNAA亚复合物,稳定DNAB Helicase载荷所需的未能状态。然而,右DNAA亚复合物的作用在很大程度上不清楚。在这里,我们表明,左/右DNAA子复合物的应有的放松,而不是仅由左DNAA子复合物,这是由应有的末端次区域刺激的。一致地,我们发现了右DNAA子复合物 - 绑定的单链应育成区域和群集区域。此外,左/右DNAA子复合物独立地结合了DNAB解旋酶。仅对于左DNAA子复合物,我们表明该群集对于DNAB加载至关重要。体内数据进一步支持了右DNAA子复合物的Unwound DNA结合的作用。综上所述,我们提出了一个模型,其中右DNAA子复杂与UNWOUND应变动态相互作用,有助于适当的放松和有效的DNAB解旋酶负载,而在没有Right-DNAA子复杂性的情况下,在这些过程中没有在这些过程中进行群集的辅助,以支持重复的鲁棒性。
此外,周二还将举行为期半天的异构集成路线图研讨会,由 Bill Chen 和 Bill Bottoms 主持。ECTC 还将邀请行业专家举办 7 场特别会议,讨论几个重要且新兴的主题领域。周二将安排 5 场特别会议,每场 90 分钟。5 月 31 日星期二上午 8:30,Chukwudi Okoro 和 Benson Chan 将主持“MicroLED 显示技术:大批量制造 (HVM) 进展与挑战”会议,随后 Amr Helmy 将于上午 10:30 主持特别会议,主题为“IEEE EPS 异构集成路线图的选定主题”。周二下午 1:30,Jan Vardaman 将就“从芯片到共封装光学器件”这一主题发表特别演讲,随后 Kuldip Johal 和 Bora Baloglu 将在下午 3:30 发表特别演讲,题为“IC 基板技术将如何发展以实现下一代异构集成方案以实现高性能应用?”周二晚上,Kitty Pearsall 和 Chris Riso 将共同主持 EPS 总裁 ECTC 小组会议,主题为“最先进的异构集成封装方案”。