摘要:从几十年的广泛研究,与神经炎症有关的关键遗传元素和生化机制中出现了,已被描述,这极大地有助于我们对神经退行性疾病(NDDS)的理解。在这个MinireView中,我们主要从过去三年开始讨论数据,强调了与神经炎症有关的两种主要细胞类型的关键作用和机制。审查还强调了早期发作,神经炎症的关键影响及其在NDDS发病机理中的动态相互作用的扩展过程。面对这些复杂的挑战,我们引入了支持使用间充质干细胞的无细胞治疗的引人注目的证据。这种治疗策略包括对小胶质细胞和星形胶质细胞的调节,周围神经细胞炎症的调节以及针对专门为NDD设计的靶向抗炎干预措施,同时还讨论了工程和安全考虑。这种创新的治疗方法精巧地调节了周围和神经系统的免疫系统,重点是实现出色的穿透力和靶向递送。这篇评论提供的见解对更好地理解和管理神经炎症具有重大影响。关键词:神经退行性疾病,神经炎症,间充质干细胞,外泌体神经退行性疾病(NDDS)在全球范围内变得越来越普遍。在大脑衰老的各种标志中,神经炎症引起了极大的关注[1]。这些疾病代表了主要与年龄相关并逐渐损害神经元功能的异质性神经系统疾病。虽然这些疾病可以在中枢神经系统(CNS)或周围神经系统(PNS)中表现出来,但新兴研究表明,PNS的病理学可能在CNS参与之前几年之前,可能最终导致老年人的神经退行性疾病。
摘要:越来越多的证据表明,间充质干细胞(MSC)的施用是各种脑部疾病(包括缺血性中风)的有前途选择。研究表明,缺血性中风后的MSC移植提供了有益的作用,例如神经再生,部分通过在常规神经源性区(例如脑膜下和粒状区域)中激活内源性神经茎/祖细胞(NSPC)。然而,MSC移植是否调节缺血性中风后在受伤区域激活的损伤诱导的NSPC(INDC)的命运尚不清楚。因此,对小鼠进行缺血性中风,并在巢蛋白– GFP转基因小鼠的受伤部位移植了麦克利标记的人MSC(H-MSC)。脑部切片的免疫组织化学表明,在接枝部位,而不是在脑室下区域的区域周围观察到许多GFP +细胞,这表明移植后的MCHERRY + H-MSC刺激了GFP +局部活化的内源性内源性INDC。为支持这些发现,共培养研究表明,H-MSC促进了从缺血区域提取的INDC的增殖和神经分化。此外,使用微阵列数据的途径分析和基因本体分析表明,在与H-MSCS共培养的INDC中,改变了与自我更新,神经分化和突触形成相关的各种基因的表达模式。我们还将H-MSC(5.0×10 4细胞/ µL)转移到脑动脉闭塞后6周后转移到中风后小鼠大脑中。与注射盐水注射的对照相比,H-MSC移植显示出明显改善的神经功能。这些结果表明,H-MSC的移植在部分通过调节INDC的命运来改善缺血性中风后的神经功能。
(RPMs)对实验室大鼠 Wistar 股骨间充质干细胞增殖率的影响。影响采用以下参数进行:载波频率 9.4 GHz、脉冲重复率 22、25 Hz、50–100 个脉冲、峰值功率通量密度 (pPFD) 140 W/cm 2 、1 cm 深度处 50 个脉冲的吸收能量值为 699×10 -6 J/cm 3 。通过用不同暴露模式的 RPMs 单次照射后 24 和 72 小时培养物中细胞数量的变化来评估暴露效果。根据 RPM 的脉冲重复率和脉冲数,可以观察到细胞分裂率的增加。频率为 25 Hz 且脉冲数最少(50 个脉冲)的 RPM 可最明显地刺激细胞分裂加速,并且在 72 小时后记录到最大增殖。关键词:干细胞、脂肪组织、分裂率、增殖、纳秒微波脉冲、
摘要在过去的20年中,溶瘤病毒(OVS)的发展显着增加,许多候选人进入了临床试验,其中三个获得了某些指示的批准。最近,由于其免疫原性特性,OVS还引起了候选者的兴趣,与癌症的免疫疗法相结合,其中包括免疫原性死亡以及在其基因组中携带治疗转基因的可能性。ovs将非免疫原性的“冷”肿瘤转化为发炎的免疫原性“热”肿瘤,其中免疫疗法显示出最高的功效。然而,在单一疗法或与免疫疗法结合使用中,OVS面临着许多挑战,这些挑战限制了它们的成功应用,尤其是在系统性给药上,例如肝隔离,中和,在血液中中和相互作用,感染的物理障碍以及免疫系统的快速清除。在这方面,使用间充质干细胞(MSC)作为OV递送的细胞携带者解决了许多这些障碍物,这些障碍物充当病毒载体和工厂,表达其他转基因并调节免疫系统。在这里,我回顾了OVS癌症中负载的MSC的当前进展,重点关注它们与免疫系统的相互作用,并讨论提高其治疗功效的新策略。
放射疗法是癌症治疗的重要组成部分,大约50%的癌症患者在疾病过程中接受了放射治疗。尽管如此,实体瘤经常表现出低氧区域,这可能会阻碍疗效,尤其是放射治疗。的确,缺氧会影响控制放疗反应的六个参数,称为“六r辐射生物学”(用于放射敏感性,修复,重新分配,重新分布,重新分布,重氧和反肿瘤免疫反应的重新激活),通过诱导Pleopropic细胞适应性,例如REMED EPER EPER EPER EPER EPER EPER EPER EPER,EPER EPER EPER,EPER EPER,EPER,EPER,EPER,EPER,EPER,EPER,EPER综合综合综合综合综合综合综合综合综合综合综合综合综合症,以弥补疾病综合综合综合综合综合综合综合综合综合综合综合综合综合综合综合症,细胞死亡减弱,并具有显着的临床影响。在这篇综述中,根据六个RS,我们详细介绍了缺氧以及相关的机制和途径如何影响实体瘤的放射疗法反应以及由此产生的临床意义。我们通过关注甲状腺甲状腺癌的焦点在低氧内分泌癌中表达了它。
Alexandre Sitbon,Pierre-Romain Delmotte,Claire Goumard,CéliaTurco,JérémieGautheron等。间充质基质细胞衍生的细胞外囊泡在肝衰竭和边缘肝移植康复中的治疗潜力:范围审查。Minerva Anestesiologica,2023,89(7-8),10.23736/S0375-9393.23.17265-8。hal-04385821
冠心病(CHD)仍然是发病率和死亡率的主要原因。有许多治疗性再灌注方法,包括溶栓疗法,原发性经皮冠状动脉介入干预以及抗复制药物,例如血管紧张素转化酶抑制剂和β-阻滞剂。尽管如此,没有药理学治疗可以有效地阻止心肌障碍/再灌注(I/R)损伤带来的心肌细胞死亡。为了再生心脏组织,间充质干细胞(MSC)治疗最近引起了更多关注。MSC的多效效应是通过可溶性旁分泌因子的分泌而仲裁的,并且与它们的分化能力无关。这些旁分泌介质之一是被称为外泌体的细胞外囊泡。外泌体从MSC,包括肽,蛋白质,细胞因子,脂质,miRNA和mRNA分子的受体细胞提供有用的货物。外泌体参与细胞间通信过程,并帮助受伤或病情不良的组织和器官。根据研究,发现单独的外泌体是MSC在多种动物模型中的治疗作用的原因。在这里,我们专注于心脏病外泌体MSC的治疗能力的最新发展。关键词:间充质干细胞(MSC),外泌体,心脏病,治疗,再生
1)随着分布式光伏统筹上网电价逐年下降以及储能系统成本降低,建设分布式+储能系统实现 分布式电源全部就地消纳具有较好的经济效益,同时利用储能系统每天“两充两放”的特性, 合理利用阶梯电价,提高系统效益。With the distributed PV grid prices and the energy storage system cost decreasing every year, there is good economic benefit to build the distributed + energy storage system to achieve all the local power consumption, and because the energy storage system charges and discharges twice every day, the step tariff , if well employed, can increase the system benefit. 2)通过能量管理系统控制分布式电源+储能系统平滑输出,减小外部气象条件对分布式电源输 出的影响,提高供电电能质量。Achieving smooth output from the distributed power supply + energy storage system by the energy management system, reducing the impact to the distributed power output from the external weather conditions and improving the quality of power supply. 3)通过分布式电源+储能系统组成并网型微电网系统,当电网故障时,自动切换至独立运行模 式,保持重要负荷连续供电/或者利用储能系统代替企业原有设计起到后备电源(UPS)的作 用。When the grid breaks down, the microgrid system that is composed of the distributed power supply + energy storage system automatically switches to stand-alone mode, which maintains continuous power supply or uses energy storage system to replace the UPS in the original design.
通常,对于高速运行的拾放机器人,在机器人制动阶段会损失大量能量。这是因为在这种运行阶段,大部分能量都以热量的形式耗散在电机驱动器的制动电阻上。为了提高高速拾放循环中的能源效率,本文研究了与电机并联配置的可变刚度弹簧 (VSS) 的使用。这些弹簧在制动阶段储存能量,而不是耗散能量。然后释放能量以在下一个位移阶段驱动机器人。这种设计方法与运动发生器相结合,通过基于机器人动力学求解边界值问题 (BVP),寻求优化轨迹以减少输入扭矩(从而减少能耗)。在五杆机构上对所提出方法的实验结果表明,输入扭矩大幅减少,因此能量损失也随之减少。