几十年来,散射技术一直被广泛用于表征光学质量表面(即粗糙度远小于照明波长的表面)。散射光在许多领域都至关重要,例如,对于光学滤波器的最终性能、天文学和空间应用的先进光学系统或微电子学。对于所有这些应用,降低粗糙度和表面缺陷都是一个主要问题,而抛光技术的改进使得制造粗糙度低于几分之一纳米的表面成为可能。与此同时,测量技术也得到了发展,可以可靠地检测这些表面的特性,而光散射已被证明是一种非常有效、快速且非侵入性的方法,可以表征所有所需的参数。如今,角度分辨散射仪 [16-19] 可以在整个角度范围内以及从可见光到近红外的宽光谱范围内实现低于非吸收朗伯模式的 8 个十年的动态。
图2。量子基础知识。(a)量子由两个量子状态组成| 0⟩和| 1⟩具有能量差e。(b)当在ω01= e /ℏ时共鸣时,可以在|之间驱动量子状态。 0⟩和| 1⟩,包括|的线性组合0⟩和| 1⟩。(c)在CW谐振驾驶下,Qubit状态发生所谓的Rabi振荡,其中概率| α0| 2和| α1| 2随着时间的及时进化。(d)在频率ω01(噪声温度t b,阻抗z b)偶联质量因子q处耦合到频率质量因子q在时间尺度t 1上导致量子状态转变。如果k b t b≪ω01,这些过渡将由|占主导地位。 1⟩→| 0⟩过程。(e)如果可以通过环境参数λ移动量子频率(例如,磁场),λ中的闪光在ω01中引起浮动,从而在时间尺度Tφ上删除了量子状态。
光源不仅能推动重大科技进步,还在行业转化研究和创新中发挥着重要作用。光子学领导小组 iii 最近发布的一份报告指出,光子学对英国社会和经济的价值与日俱增。制造或提供基于光子学技术服务的公司每年生产的商品和服务价值约为 135 亿英镑,为英国经济创造了 53 亿英镑的总增加值。英国光子学产业的持续增长反映了光在当前和下一代产品的开发和制造中所起的关键作用。虽然光子学产业比本战略文件所涵盖的光源类型要广泛得多,但大规模光源实验所取得的物理、化学和生物基础进步为光子学公司乃至其他技术产业所利用的许多技术发展提供了巨大的推动力。
近红外光谱 (NIRS) 是一种光学神经成像方式,可用于研究组织氧合情况。它被广泛用于测量皮质氧合和脱氧血红蛋白浓度变化 [1]。将光源和光探测器放置在头皮上,记录不同波长的光强度变化,并通过改进的比尔-朗伯定律 (MBLL) 转换为血红蛋白浓度变化 [2]。差分光程因子 (DPF) 是光在组织内传播的平均光程与光源-探测器分离距离之比,在 MBLL 中通常将其视为先验常数 [3]。我们之前的研究表明,DPF 值取决于源-探测器分离,而探测器表面积会影响 DPF 值的稳定性。DPF 值的这种变化可能进一步导致 NIRS 测量中对血红蛋白浓度的估计不准确 [3]。首批针对新生儿和成人脑血管病患者的 NIRS 临床研究发表于 20 世纪 80 年代 [4, 5]。在 20 世纪 90 年代及以后,NIRS 在检测颅内血肿方面的能力标志着 NIRS 开始在临床上应用于创伤性脑损伤 (TBI) [5-8]。随着 NIRS 广泛应用于临床研究以获取准确的脑部测量数据,DPF 值的选择需要仔细评估。已经开发出多种方法来解释和估算光在人体组织等高扩散介质中的传播和 DPF 值。蒙特卡洛 (MC) 模拟是辐射传输方程 (RTE) 的随机近似模型,在模拟一般复杂介质内的光子传播时具有出色的精度。由于其灵活性和计算速度的最新进展,MC 方法已在组织光学领域被用于解决许多研究中的正向和逆问题 [3, 9-20]。在本研究中,我们使用 MC 模拟中的数字头部模型研究了影响 DPF 值的因素、临床条件下的 DPF 值。
简介 激光技术发明几年后,人们就已开始考虑将其用于国防和武器领域。 20 世纪 60 年代末,有人提出了用于摧毁弹道导弹的“圣剑”项目,但该项目一直停留在纸面上,军事研发主要集中于基于激光的系统来拦截空中威胁。 这些系统的原型,例如 THEL 和 YAL-1,在 20 世纪 90 年代和 21 世纪初仅用于演示目的。随着光纤技术和激光泵浦源的进步,到 21 世纪末,发射功率为 kW 级的连续波 (CW) 光纤激光器已广泛应用。鉴于光纤增益介质是一种比固态增益介质更高效且成本更低的替代品,人们对激光在国防领域的应用重新产生了兴趣。
提出了一种使用太阳保护窗膜的被动方法。因此,作者认为,防晒涂层不能作为反激体提供所需的效果。文章[9] De criber基于铜化合物的薄膜,这些铜化合物保护窗户免受紫外线和可见红外范围的辐射。这些薄膜在500 nm范围内最有效地工作,这无法为扫描提供所需的保护,因为激光在650–3000 nm的波范围内工作。本文[10]的作者分析了减少玻璃振动并防止激光屋檐掉落的选项。纸张考虑了双层玻璃窗口对激光扫描的保护性能的设计影响。分析的结果表明,窗框只有1%的玻璃振动传输,并且其他所有内容都是通过窗玻璃传输的。
速度约为 70 cm3/h,构建体积限制为 400×400×400 mm3。SEBM 工艺与 SLM 类似,不同之处在于,SEBM 使用电子束代替激光在真空室中预热和熔化粉末床层 [7,8]。SEBM 的构建速度更快(高达 100 cm3/h),但表面光洁度较差(15-35 Ra,而 SLM 为 4-11 Ra)。LMD 是一种增材制造工艺,其中零件被逐层熔覆 [8]。粉末不是选择性地熔化先前沉积在粉末床上的材料,而是通过惰性气体将粉末带入激光束中,在那里熔化,然后送入工件,在那里它们与先前沉积的薄表面层熔合。该技术的优势在于对构建尺寸没有限制,最高构建速度(高达 300 cm3/h)为
建立了工作流程后,我们随后使用脉冲激光诱导冲击波法将 RNP 直接递送到完整的烟草叶片细胞中,这比原生质体或受精卵更容易制备和处理。我们引入了一个预组装的 RNP,它包含 HiFi Cas9 蛋白、crispr RNA (crRNA) 和 ATTO-550 标记的反式激活 crispr RNA (tracrRNA),靶向烟草 PDS 或 ADF 基因。荧光 tracrRNA 允许直接筛选转染细胞,因此不需要选择标记基因(图 2A')。样本大小和实验设置与上面描述的 DsRed 转染相同(图 1A、B)。根据我们的观察,ATTO-550 荧光在激光处理后 24 小时开始变得可见,在转染后 48 小时达到最大值。根据制造商的说法,RNP 复合物的活性最长为 72 小时。
(ii) 米:一米是光在 1/299792458 秒的时间间隔内在真空中行进的距离。 (iii) 秒:一秒是铯-133 原子经历 9192631770 次振动所需的时间。 (iv) 开尔文:一开尔文等于水的临界点热力学温度的 1/273.15。 (v) 安培:一安培是当电流流过两根长平行导线时,每根导线的长度等于一米,在自由空间中相隔一米,两根导线之间会产生 2×10 7 N 的力。 (vi) 坎德拉:一坎德拉是光源在给定方向上的发光强度,该光源发射频率为 540 × 10 12 Hz 的单色辐射,其辐射强度为每立体角 1/683 瓦。 (vii) 摩尔:一摩尔是任何物质的量,其所含的基本单位可能与 0.012 千克 C-12 碳同位素中的原子数相同。