•概念化,验证和提交了针对小型卫星技术的两项独一专利专利,从而在大气测量中产生了微型和模块化的解决方案•开创了一种技术,以实时的效率和数据提高250%的技术,以提高效率和数据的高密度光谱数据。•建立并优化了一个平台不足的数据管道,用于实时电离层分析,实现电离层拓扑的现象和预测•自动化的大规模数据分析来自水,空气和地面的RF和基于接地的RF和光学系统,并极大地降低了数据对图的时间范围•独立的数据分析范围•独立的数据范围,并实现了数据,并实现了辐射范围,并实现了辐射序列实体序列,并实现了实体序列,并实现了实体序列,并实现了恒定的实体序列,被动收集信号的表征和分类•开发了一种自动化的例程来远程评估和监视雷达系统,将整体效率提高300%
极化是经典和量子制度中光最基本的特征之一。因此,控制(或确定)光的极化状态的能力对于许多科学技术领域至关重要,实际上,使用光(从摄影到量子加密到量子加密),依赖于这种能力的每个应用都具有光线。多种机制负责任地扰动光 - 物质相互作用的光的极化,其中首席是反射。例如,圆极化的惯性在正常发生率下逆转,而线性极化在反射后的斜发生下变成椭圆形[1]。鉴于镜子在光学系统中很难避免,因为它们被广泛用于重定向光或建筑光腔,将极化控制嵌入镜子中有助于最大程度地减少所需的光学组件的数量(并且,因此,大小)并提高光学系统的效率。随着当前驱动光谱,传感和光学信号处理的光学系统的驱动而变得越来越重要,更不用说基于分布式bragg反射器的紧凑光源的开发,例如垂直腔表面发射激光器。
多光谱成像和时间分辨成像是荧光显微镜中的两个常见采集方案,它们的组合可能有益于提高特异性。数据集(时空,时间和光谱)的多维性引入了一些挑战,例如获取大数据集和较长的测量时间。在这项工作中,我们提出了一个时间分辨的多光谱荧光显微镜系统,其测量时间短,通过基于单像素摄像机(SPC)方案利用压缩感(CS)来实现。带有高分辨率摄像头的数据融合(DF)使我们能够解决典型的SPC的低空间分辨率问题。集成了硬件和算法的SPC,CS和DF的联合使用代表了一个计算成像框架,以减少在保留信息内容的同时减少测量的数量。这种方法已被利用以演示缩放功能而无需移动光学系统。我们在空间,光谱和时间特性方面描述和表征系统,以及对细胞样品的验证。
最近对非厄米光学系统中异常点 (EP) 的研究揭示了其独特特性,包括单向不可见性、手性模式切换和激光自我终止。在具有增益/损耗组件的系统中,EP 通常在激光阈值以下访问,即在线性范围内。在这项工作中,我们通过实验证明,耦合半导体纳米激光器中的 EP 奇点可以在激光阈值以上访问,在那里它们成为非线性动力系统的分支点。与不可避免的腔失谐阻碍 EP 形成的普遍看法相反,我们在这里证明这种失谐对于补偿载流子引起的频率偏移是必要的,从而恢复 EP。此外,我们发现激光 EP 处的泵浦不平衡随总泵浦功率而变化,从而实现其连续跟踪。这项工作揭示了耦合半导体激光器中激光阈值以上的 EP 的不稳定性质,为实现自脉冲纳米激光装置和频率梳提供了有希望的机会。
当前和未来的太空和机载光学仪器面临着巨大的技术和经济挑战,趋向于高度集成。因此,组件和由此产生的子组件的复杂性使增材制造 (AM) 成为一种颠覆性生产的手段。此外,随着性能要求的提高,光学系统变得越来越大,这需要开发新的制造工艺以保证预期的性能。陶瓷材料的另一个非常苛刻和具有挑战性的关键领域是半导体行业。事实上,这些设备的整个制造工艺流程非常激进,需要具有特殊化学、热和电子性能的材料,而只有陶瓷才能满足这些要求。此外,对灵活和复杂形状的需求以及在最近的短缺之后不断增长的搬迁和加速生产的愿望使得 3D 打印成为一种相关的应对措施。因此,我们不难理解为什么航空航天和电子应用代表着未来 10 年 3D 打印陶瓷技术部件最重要的收入机会,预计到 2030 年底将达到约 7.64 亿美元。
摘要 个体对直线前进的感知 (即自我中心定位) 可能会在患有获得性脑损伤 (ABI) 的患者中发生转变。利用独特的光学系统,我们设计了一种小型便携式设备,供临床使用。数据来自 14 名视力正常的成年人,年龄从 23 岁到 53 岁不等,以及 10 名年龄从 37 岁到 82 岁不等的获得性脑损伤成年人。组平均值以及个体受试者的平均二维自我中心定位值与使用更大、更复杂的实验室设备建立的规范数据一致。关于 10 名获得性脑损伤成年人的初步数据显示了它的临床诊断和治疗应用。事实证明,这种新设备与文献中描述的较大外壳一样精确、准确、有效和可靠。此外,该设备的紧凑性有助于我们诊所对后天性脑损伤患者进行持续测试。
摘要:在过去的十年中,包括5G在内的Modern电信技术的扩散以及广泛采用The Internet(IoT)导致了数据生成和传播的前所未有的激增。这次激增创造了对高级信号处理能力的不断升级需求。微波处理(MWP)处理器提供了一种有希望的解决方案,以满足资本对高带宽和低潜伏期对光学系统可实现的史无前例的数据处理需求。在这项工作中,我们引入了使用Ele-thickimony的全光RF过滤的集成MWP处理单元。我们利用了锑的结晶动力学来证明光子泄漏的积分器,该积分器被认为是作为一阶低通量过滤器,带宽为300 kHz,超紧凑型足迹为16×16μm2。我们通过实验证明了这种过滤器作为包膜检测器的实现,以解调振幅调节信号。最后,提出了有关实现带宽可调性的讨论。
数字双胞胎方法,用于在复杂地形W-P.20 1571034363上安全着陆的数字型登陆:teahertz真空电子销售W-21 1571033985的铅笔梁电子光学系统:开发3kWhe电池储能系统的3KWH WATTEM WYMBACACITOR HYBRID储能WIREDENS WIRSTID WIRESTER WIRESTER WONSTINE W-P.22 157105624:便携式太阳能充电设备W-23 1571037449:分层型号堆叠:通过先进的合奏机器学习技术W-24 1571044011:使用智能人工照明系统W-P.25 1571056759:Mobile Rob 2 Feagle Black Interage Mobile Robots WW-P.24 1571044011通过高级合奏机器学习技术W-24 1571044011:Solar Greenhouse INLUMINANIT 1571049612:使用深度学习模型W-P.27 W-P.28 1571042716:FMCW雷达成像的优势和挑战,通过变化的子频段W-P.29 1571043662:探索人类活动的潜在,探索w-p.30 15710506050605060600600000100060000090060060000900000001T,天气信息聚合(SIGWA)W-31 1571033978:基于逆变器的电源系统W-32 1571050826:PointBi-fpn:对LIDAR 3D对象的PointPillars ticlection fluipection fter-divection
摘要:随着X射线源、聚焦光学系统和X射线探测器的发展,微束X射线散射技术已经成熟并广泛应用于聚合物材料的表征。微束X射线散射是一种独特而强大的工具,它可以提供有关局部结构的丰富信息,例如材料的空间不均匀性和局部位置的结构变化。此外,通过结合微束小角X射线散射(SAXS)和广角X射线散射(WAXS),可观测的空间尺度范围从几个到几百个A˚,这是聚合物分级结构分析中最重要的尺度范围。本文介绍了微束X射线散射在聚合物结晶、空间不均匀性分析、外场下的应力传递和嵌段共聚物体系中的微相分离结构分析中的代表性应用。 [doi:10.1295/polymj.PJ2007077] 关键词 微束小角和广角X射线散射/聚合物表征/
EELT 仪器 望远镜需要仪器来探测光子并生成数字图像和光谱。正如可以预料的那样,这些仪器也带来了重大的工程挑战。人们正在研究一系列仪器概念来解决科学问题,从探测和了解系外行星,到早期宇宙中星系的成像光谱。这些仪器的光谱范围从 0.35 到 14 μm,光谱分辨率 (λ/Δλ) 从几十到 150,000,视场从 1 角秒到 10 角分。这里展示了英国-法国 EAGLE 概念的一个例子,它展示了技术挑战。该仪器旨在通过同时收集和分析来自 20 个星系的红外光来提高望远镜的效率。机器人目标选择系统用于将拾取镜放置在仪器焦平面上的星系图像上。光束控制镜将这些图像中继到一组成像光谱仪。每个通道都包含一个自适应光学系统,该系统采用一种称为多目标自适应光学的新技术。EAGLE 仪器将使人们能够研究早期宇宙中的星系动态,以帮助了解它们是如何形成的以及它们中恒星形成的速度有多快。