总结“泻湖”一词通常被滥用。农民,媒体和公众倾向于称所有土肥盆地盆地泻湖。“泻湖”一词具有特定的含义。asae standards将泻湖定义为“废物处理蓄水池……(其中的肥料)与足够的水混合以提供高度稀释……为主要目的而言……(通过生物学活性减少)污染潜力。治疗泻湖没有在其治疗卷下方绘制……除了维护外。”许多有关液体肥料处理系统的问题:衬里渗漏,意外流动,灾难性的堤防失败,病原体释放,气味排放和泥土盆地的闭合并不是基于泻湖的系统这些问题均由所有流动系统共享。本卷中的其他白皮书涉及这些问题。本文的重点是泻湖的生物治疗潜力。泻湖依靠物理,化学和生物过程来降解肥料。生物过程在退化中起着最大作用。生物群落的生长和维持取决于温度,食物,缺乏有毒元素以及生物在泻湖中保持足够长的生殖能力。微生物群落在泻湖中垂直隔离。每一层在整体治疗过程中执行分离率功能。Lagoons用作流通系统的运行最佳,其机制可定期去除废水。植物营养素的效率低下,2。 气味和氨排放。植物营养素的效率低下,2。气味和氨排放。光合生物在含硫和氮的化合物的降解中起着重要作用,以及浓厚的元素。因此,在泻湖生物学中存在适当的光波长以进行光合作用。废水清除的最常见方法是通过灌溉将植物营养回收到农作物中。局部降雨和蒸发的局部模式(以及孤立的风暴事件产生的降雨量)决定了泻湖是否具有净剩余废水,或者是否必须将水添加到系统中以维持通过泻湖的材料流动。如果要保持动物农业的可行治疗方法,则必须解决两个挑战:1。在泻湖流出物中不能考虑到所有进入泻湖的氮中有80%,并且在污泥中保留了大部分进入泻湖的肥料磷。植物营养素在泻湖废水中的浓缩量低于其他肥料处理产品,尽管泻湖废水比大多数肥料养分来源的氮与可溶磷具有更好的平衡。2道格拉斯·W·汉密尔顿(Douglas W. Hamilton),俄克拉荷马州立大学生物系统和农业工程副教授。3 Babu Fathepure,俄克拉荷马州立大学微生物学和分子遗传学助理教授。4 Charles D. Fulhage,密苏里大学生物学和农业工程教授。 5威廉·克拉克森(William Clarkson),俄克拉荷马州立大学民用与环境工程副教授。 6 Jerald Lalman,俄克拉荷马州立大学生物系统和农业工程助理教授。4 Charles D. Fulhage,密苏里大学生物学和农业工程教授。5威廉·克拉克森(William Clarkson),俄克拉荷马州立大学民用与环境工程副教授。6 Jerald Lalman,俄克拉荷马州立大学生物系统和农业工程助理教授。la-la-la-la-la-lapluent应以氮的基础用于农作物生产,在多个1审查员中灌溉废水:爱荷华州立大学农业和生物系统工程副教授托马斯·格兰维尔(Thomas D. Glanville);爱荷华州立大学农业和生物系统工程副教授Jeffery C. Lorimor;华盛顿特区美国农业部自然资源保护局国家环境工程师Barry L Kintzer;德克萨斯州沃思堡的USDA-NRCS国家水管理中心环境工程师David C. Moffit; Vincent R. Hill,北卡罗来纳大学教堂山分校的环境科学与工程博士研究助理;北卡罗来纳州立大学生物学和农业工程副教授John J. Classen。
慕尼黑,80539 德国慕尼黑 * 通讯作者:r.oulton@imperial.ac.uk 分子振动对光的拉曼散射提供了一种通过分子内部键和对称性进行“指纹识别”的强大技术。由于拉曼散射很弱 1 ,因此非常需要增强、引导和利用它的方法,例如通过使用光学腔 2 、波导 3–6 和表面增强拉曼散射 (SERS) 7–9 。虽然 SERS 通过将光局限于金属纳米结构中极小的“热点”内而提供了显著的增强 6,15,22,2,但这些微小的相互作用体积仅对少数分子敏感,产生难以检测到的微弱信号 10 。在这里,我们展示了将 4-氨基硫酚 (4-ATP) 分子与等离子体间隙波导结合后的 SERS 引导至单一模式,效率 > 𝟗𝟗%。尽管牺牲了一个限制维度,但我们发现由于波导的更大传感体积和非共振模式,在宽光谱范围内 SERS 增强了 𝟏𝟎 𝟒。值得注意的是,波导-SERS (W-SERS) 足够明亮,可以对波导中的拉曼传输进行成像,从而揭示纳米聚焦 11–13 和珀塞尔效应 14 的作用。模拟激光物理学中的 𝛃 因子 15–17,观察到的接近 1 的拉曼 𝛃 因子为 SERS 技术带来了新的亮点,并指出了控制拉曼散射的替代途径。 W-SERS 引导拉曼散射的能力与基于集成光子学 7-9 的拉曼传感器有关,可应用于气体和生物传感以及医疗保健。拉曼光谱尽管效率低下,但由于利用了可见光波长下激光和探测器技术的成熟度,已成为一种强大的技术。已经开发出各种依赖于受激拉曼散射 1 或表面增强拉曼散射 (SERS) 18-20 的增强技术。受激拉曼过程是一系列强大方法的基础,但依赖于高强度和短脉冲光激发,这通常会损坏样品。同时,SERS 21 已成为一个庞大的研究领域,探索能够将拉曼增强许多数量级的金属纳米结构,例如粗糙的金属表面 22、纳米颗粒 10,23,24、纳米间隙 25,26、波导 9,27 和金属尖端 18,28,29。尽管对单个分子敏感,SERS 仍有几个局限性。首先,最强的 SERS 需要非常小的“热点”,其中增强是活跃的,但只有少数分子可能会经历它。其次,共振增强限制了拉曼带宽。最后,从局部场中出现的 SERS 会发生衍射,使有效检测变得困难 10 。在本信中,我们使用等离子体波导探索波导增强拉曼散射 3–6 ,结合 SERS 7–9 ,如图 1a 所示。它由一个等离子体间隙波导和放置在玻璃基板两端30-32的光学天线耦合器组成。间隙区域的拉曼散射通过两种机制增强:纳米聚焦效应11-13引起的局部激发强度增加,以及真空涨落增强引起的珀塞尔效应14。图1b中波导模式的有限差分时域(FDTD)模拟显示了光学限制强度。虽然波导在许多倍频程上提供非共振SERS,但这种增强在天线-波导耦合的有效带宽内持续存在。虽然这种方法牺牲了沿一个方向的限制,但强波导-SERS(W-SERS)能够对纳米结构上的拉曼传输进行成像,并观察纳米聚焦和珀塞尔效应。我们发现间隙模式中的SERS占主导地位,因为它驱动珀塞尔效应。因此,我们引入了自发拉曼β因子15–17,以量化SERS与该单一模式耦合的比例。我们发现W-SERS在宽光谱范围内产生接近1的拉曼β因子,增强了10 4。