摘要 - 审查总结了纳米医学中基于石墨烯和基于石墨烯的纳米酸盐(GBN)应用的前景,包括药物递送,光热和光动力疗法以及在癌症治疗中的Theranostics。GBN在科学和医学的各个领域的应用是由于石墨烯的独特特性允许开发新型的开创性生物医学应用。审查描述了用于生产新靶向石墨烯的生物医学剂的当前方法,用于肿瘤的肿瘤,光热治疗和光动力疗法。对出版物和FDA数据碱基的分析表明,尽管对全球进行石墨烯基材料进行了大量临床研究,但缺乏有关使用基于石墨烯的偶联物用于靶向药物输送和诊断的临床试验的信息。该评论将有助于研究碳纳米结构,材料科学,药物化学和纳米医学的研究人员。
太阳(∼ 6,000 K)和外层空间(∼ 3 K)是地球人类两种重要的可再生热力资源。通过光热(PT)进行太阳热转换和通过辐射冷却(RC)获取外层空间的寒冷已经引起了人们的极大兴趣。然而,大多数 PT 和 RC 方法都是静态的和单功能的,只能在阳光下或黑暗下分别提供加热或冷却。在此,开发了一种光谱自适应吸收器/发射器(SSA/E),它具有强太阳吸收和可在大气窗口内(即 8 至 13 μ m)切换的发射率,用于 PT 和 RC 的动态组合,对应于从太阳持续有效地获取能量并将能量释放到宇宙。所制造的 SSA/E 不仅可以在阳光下加热到高于环境温度约 170°C,还可以冷却到低于环境温度 20°C,并且热建模可以捕捉 SSA/E 的高能量收集效率,从而实现新的技术能力。
摘要:科学和技术的持续发展需要在越来越高的空间分辨率下进行温度测量。具有温度敏感发光的纳米晶体是提供高精度和远程读取的这些应用的流行温度计。在这里,我们证明了比率发光热实验可能会遭受纳米结构环境中的系统误差。我们将基于灯笼的发光纳米热计处于距AU表面高达600 nm的控制距离。尽管这种几何形状不支持吸收或散射谐振,但由于光态的变化密度变化导致温度计的变形导致高达250 K的温度读出误差。我们的简单分析模型解释了温度计发射频率,实验设备以及误差幅度的样品的效果。我们在几种实验场景中讨论了我们发现的相关性。这种错误并不总是发生,但是在反映界面或散射对象附近的测量中可以预期它们。关键字:光子学,光态的密度,温度传感,纳米晶,灯笼的发射
摘要:纳米粒子是多种生物医学应用(包括癌症治疗)的极佳平台。它们可以结合不同的分子,产生化疗剂、放射性核素和靶向分子的组合,以改善癌症的治疗策略。与单独的化疗、外部照射或靶向放射治疗相比,这些特定的纳米系统旨在对健康细胞产生最小的副作用,并且对癌细胞具有更好的治疗效果。在结直肠癌中,一些金属和聚合物纳米粒子平台已被用于潜在地实现外部放射治疗和靶向药物输送。与 PEG 和/或 HLA 结合的聚合物纳米粒子、脂质体、白蛋白基纳米粒子等可以成为增加血液循环时间和减少副作用的极佳平台,此外,联合化疗/放疗可以提高治疗效果。此外,放射性标记的纳米粒子已被结合以靶向特定组织,主要用作诊断剂、药物/基因递送系统或等离子体光热疗法增强剂。本综述旨在分析纳米系统如何影响组合疗法并评估其在结直肠癌治疗中的地位。
肿瘤是一种严重威胁人类健康的疾病,一直是医学领域的主要挑战。目前,肿瘤治疗的主要方法包括手术,放疗,化学疗法等,但是这些传统的治疗方法通常有一定的局限性。此外,肿瘤复发和转移也是临床治疗中面临的困难问题。在这种情况下,越来越强调了金属纳米材料在肿瘤疗法中的重要性。金属纳米材料具有独特的物理,化学和生物学特性,为肿瘤治疗提供了新的思想和方法。金属纳米材料可以通过各种机制来实现针对肿瘤的靶向治疗,从而减少对正常组织的损害。它们还可以用作药物携带者,改善药物的稳定性和生物利用度;同时,一些基于金属的纳米材料也具有光热,光动力和其他特征,可用于肿瘤的光疗。本综述研究了过去5年内在肿瘤疗法中应用金属纳米材料的最新进展,并提供了对未来应用的潜在见解。
先进的热光材料促进了光学设备中高效的热管理和控制,对于光伏、热发射器、锁模激光器和光开关等许多应用都至关重要。本文通过将二维氧化石墨烯 (GO) 薄膜精确集成到微环谐振器 (MRR) 上并控制薄膜厚度和长度,研究了二维氧化石墨烯 (GO) 薄膜的一系列热光特性。全面表征了具有不同层数和还原程度的 GO 薄膜的折射率、消光系数、热光系数和热导率,以及光热效应引起的可逆还原和增强的光学双稳态。实验结果表明,二维 GO 薄膜的热光性质随还原程度的不同而变化很大。此外,还观察到热光响应的显著各向异性,从而能够实现高效的偏振敏感设备。 2D GO 的多功能热光响应大大扩展了可设计的功能和设备的范围,使其有望用于各种热光应用。
在本研究中,使用了能够选择性地与被荧光染色的单链目标DNA(荧光DNA)结合的单链DNA修饰的2种大小和材质不同的探针粒子(金纳米粒子,Probe1;聚苯乙烯微粒,Probe2),尝试通过用激光照射含有这些粒子的溶液,利用光的力量(光诱导力)以及由该力引起的光诱导对流,使目标DNA和探针粒子局部集中,从而加速DNA双链的形成。结果发现,经过5分钟的光照,探针1和2的凝集物形成约数十μm大小,荧光DNA被聚集并捕获在凝集物的间隙中。还发现,与探针颗粒表面的DNA牢固结合的互补碱基序列(匹配DNA)越强,发出的荧光信号就越强(图2左)。特别地,本研究中使用的微粒经历了“米氏散射”,即当微粒的尺寸与激光波长相当时,光会发生强烈散射的现象。这种增加的光功率可用于提高浓缩效率。此外,由于光力增加时组装体变得更加稳定,因此人们认为可以实现迄今为止难以实现的固液界面光诱导双链形成的加速。通过利用该机制,我们实现了 7.37 fg/μL 的检测限,成功以比传统数字 PCR 方法(检测限:约 200 fg/μL)高一到两个数量级的灵敏度检测 DNA(图 2,右)。通常情况下,由于互补 DNA 分子之间碰撞的概率较低,在如此稀释的 DNA 溶液中形成双链需要很长时间。异探针光学浓缩法对 DNA 的检测之所以具有高灵敏度和快速性,被认为是由于通过显著增加聚集体内的局部 DNA 浓度,加速了这些极少量 DNA 双链的形成。此外,我们证明了通过用光照射金纳米粒子并利用产生的光的热量(光热效应)来松散双链键并增加键断裂的概率,来自聚集体的荧光信号表现出极高的碱基序列特异性,从而能够清楚地检测和识别24个碱基长的目标DNA中仅含有单个碱基的突变,包括位置依赖性(图3)。仅使用聚苯乙烯(Probe2)的情况,在所用激光的波长(1064nm)下几乎没有光热效应,因为与探针是同一类型,所以称为“同源探针”,否则称为异源探针。
添加剂制造(AM)技术(也称为3D打印)在过去十年中已经显着开发,以允许与传统制造技术相当的印刷分辨率进行材料处理的新功能。顺序层沉积可以导致创建具有最小化材料废物,高生产吞吐量以及提高原型制作能力的复杂零件,同时还可以满足对中和低量生产的需求。AM是一个不断增长的研究领域,因为纳米材料添加剂可以增强最终用途应用机械,电和其他特性。但是,使用纳米材料夹杂物也可以增强AM过程本身。在这里,我们讨论了纳米材料作为融合沉积建模(FDM)的局部加热器,作为直接墨水写入(DIW)的粘膜效果以及用于选择性激光烧结(SLS)和VAT聚合(VP)的光热灵敏度的工作。我们还注意到了研究的AM功能与当前行业制造之间的断开连接;纳米材料可以弥合技术差距,并导致工业制造空间中的新常见实践。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应
很长一段时间以来,对于这种结构的毒性有限,它已被用作各种ands的抗菌剂,例如食品存储,健康行业,化妆品和纺织品涂料。在过去的几年中,尽管有几次评论评估了AGNP在生物医学ELDS中的特殊属性和应用,但在AGNPRS的综述中存在巨大差距。12,13这些类型的Ag纳米材料具有生物医学应用中传统Ag形式(球形结构)的更有效和多功能替代品,这是由于高灵敏度,特定的c光学特性和可调性。例如,由于缺乏锋利的边缘缺乏锋利的边缘和AGNP的光滑表面,Agnps从弱的表面增强的拉曼散射(SER)中脱离了强大的光学技术,可以放大吸收在粗糙金属表面上的拉曼散射信号。此外,AGNP的吸附仅限于可见光谱,而AGNP的表面积小于Agnprs,从而降低了它们的效率和催化的性能。此外,可以使用更好的光热转化效率进行治疗。14 - 16然而,Agnprs的特定结构证券(这些纳米op的尖端)可能会导致
