纳米谱材料是用于光学,电子和生物探测器应用的低维材料生长的材料的有希望的构建基块。特别是,自下而上的合成0D石墨烯量子点作为单个量子发射器显示出很大的潜力。要充分利用其令人兴奋的特性,石墨烯量子点必须具有很高的纯度;有效的纯度的关键围栏是起始材料的溶解度。在这里,我们报告了一个高度溶剂且易于采用的棒状石墨烯量子点的合成,其含量高达94%。这对于红色排放而言罕见。高溶解度与结构的设计直接相关,从而可以准确描述溶液和单分子水平的石墨烯量子点的光物理特性。通过量子化学计算完全预测了这些光物理特性。
用等电子 BN 单元替换 CC 会产生极其相似的分子,但 BN 同类物通常具有不同的性质。1 由于这种现象,将 BN 掺入有机材料中已受到广泛关注,2 目前已成为一种修改物理和光电性质的成熟方法。3 该方法已应用于螺旋烯,发现将 BN 掺入[4]螺旋烯(例如 A 和 B,图 1)的螺旋骨架内可提高其相对于全碳[4]螺旋烯的荧光效率。 4 然而,将 BN 单元纳入更高阶[ n ]螺旋烯( n = [5],对构型稳定性必不可少)的螺旋骨架的研究还不够深入,据我们所知,迄今为止尚未报道过更高阶螺旋烯、[5] 和 [6] 螺旋烯( C 和 D )的简单 BN 类似物(迄今为止发表的所有例子都是 p 扩展 BN – 螺旋烯,例如 E )。5
卤化物钙钛矿构成了新兴材料类别的基础,用于在可再生和可持续应用中进行广泛应用,包括光催化和太阳能收集。这些材料具有有益的光物理特性,包括适合太阳能收集的带镜和有效的电荷筛选,这些筛选是有效的电荷载体分离和对缺陷的阻力的基础。对于有机 - 无机杂化钙化物,这些益处被认为是由于偶极分子阳离子而产生的,这些阳离子可以响应带电的颗粒和缺陷而重新定向。在这项工作中,我们为无机金属卤化物钙钛矿提供了类似的观点,这些卤化物钙质不包含带有永久偶极子的分子物种。我们讨论了孤对电子如何导致与传统分子塑料晶体和杂化钙钛矿相比表现出动力学的偶极离子。我们认为,使用第一原理模拟和同步加速器散射的这些电子塑料晶体运动可以进一步理解对金属卤化物perovskites的光物理特性的基本理解,并为高级功能材料的设计提供了信息。
1 纳米物体介质光物理实验室,瓦维洛夫国立光学研究所,Kadetskaya Liniya VO,dom 5,korp.2,199053 圣彼得堡,俄罗斯;atoikka@obraz.pro(AT);barnash.yaroslaw@yandex.ru(YB);kpv_2002@mail.ru(PK) 2 纳米结构材料与器件光物理实验室,瓦维洛夫国立光学研究所,Babushkina 街,dom 36,korp.1,192171 圣彼得堡,俄罗斯 3 圣彼得堡电工大学(“LETI”)光子学系,Ul. Prof. Popova,dom 5,197376 圣彼得堡,俄罗斯 4 先进开发部,圣彼得堡核物理研究所,国家研究中心“库尔恰托夫研究所”,1 md。 Orlova Roshcha,188300 Gatchina,俄罗斯 5 俄罗斯科学院伊曼纽尔生物化学物理研究所,4 Kosigina 街,119334 莫斯科,俄罗斯;dgkvashnin@phystech.edu 6 俄罗斯普列汉诺夫经济大学聚合物材料化学与技术学院,Stremyanny Lane,36,117997 莫斯科,俄罗斯 7 俄罗斯皮罗戈夫国立研究医科大学物理与数学系,Ostrovitianov 街 1,117997 莫斯科,俄罗斯 * 通讯地址:nvkamanina@mail.ru;电话:+7-(812)-327-00-95
摘要:碳纳米带是由完全融合的边缘共享芳烃环组成的圆柱形分子。由于其美观的结构,它们获得了不寻常的光电特性,可能适用于纳米电子学和光子学的一系列应用。然而,其合成成功率非常有限,导致其光物理特性仍然很大程度上未知。与碳纳米环(由单键连接的芳烃)相比,纳米带的强结构刚性可防止其发生偏离原始高对称构象的重大变形,因此影响其光物理特性。在此,我们研究了成功合成的(6,6)CNT(碳纳米管)带段的光诱导动力学。使用非绝热激发态分子动力学模拟对此过程进行建模,揭示了不同类型碳原子上激发态波函数定位变化所起的关键作用。这样可以详细描述整个纳米带骨架中的激发态动力学和空间激子演化。我们的研究结果提供了有关激发态电子特性和内部转换率的详细信息,这些信息可能对设计用于纳米电子和光子应用的纳米带有用。
摘要:由于其独特的光物理和电子特性,Pyrene及其类似物在近几十年来一直是广泛研究的主题。Pyrene及其衍生物形成准分子的倾向已在各个领域发现了广泛的应用。氮取代的pyrene衍生物显示出相似的光物理特性,但对它们而言,迄今为止尚未报道准分子发射。在这里,我们使用时间依赖性密度功能理论(TD-DFT)计算来研究pyrene和2-氮平的二聚体的低洼激子状态。确定准分子平衡结构,并使用糖尿病化程序披露了电荷转移(CT)激发和分子间相互作用的贡献。研究表明,两个分子形成的二聚体具有非常相似的激子状态模式,其中相关的CT贡献控制着准分子态的形成,以及L a / l b态倒置。与pyrene相比,2-余吡林中的偶极 - 偶极相互作用稳定了深色黯淡的准分子结构,并增加了转换为明亮的扭曲准分子的屏障。建议在氮取代的衍生物中的这些差异可能会影响准分子发射特性。
分子科学研究所 (ICMol) 是西班牙的一个多学科研究机构,涉及化学、物理学、材料科学和纳米技术,被西班牙研究机构评为 Maria de Maeztu 卓越单位。(光)化学反应性小组 (PRG) 是 ICMol 的多学科研究小组之一,由 Julia Perez Prieto 教授(有机化学教授(有机化学系)和可持续化学博士课程协调员)领导。该小组旨在开展材料科学和光活性纳米系统的研究,使用先进的光谱学对分子和超分子(纳米)材料进行光物理和光化学表征。
a. 巴黎萨克雷大学,ENS Paris-Saclay,CNRS,PPSM,91190 Gif-sur-Yvette,法国 b. CNR-NANOTEC – 纳米技术研究所,c/o Campus Ecoteckne,Via Monteroni,73100 Lecce,意大利 c. 考纳斯理工大学聚合物化学与技术系,Radvilenu plentas 19,LT50254 Kaunas,立陶宛 d. 杜伦大学物理系,杜伦 DH1 3LE,英国 * antonio.maggiore@ens-cachan.fr 摘要 光物理特性的控制对于电致发光器件和发光材料的持续发展至关重要。原始分子的制备和研究揭示了高效材料和器件的设计规则。在这里,我们基于热激活延迟荧光发射体中流行的供体-受体设计制备了 7 种新化合物。我们首次引入了苯并呋喃并[3,2-e]-1,2,4-三嗪和苯并噻吩并[3,2-e]-1,2,4-三嗪受体,它们与几种常见的供体相连:吩恶嗪、吩噻嗪、咔唑和 3,6-二叔丁基咔唑。在溶液和固态下进行了 DFT 计算和稳态和时间分辨光物理研究。虽然含有吖嗪部分的衍生物在任何形式下都是非发射性的,但包含 3,6-二叔丁基咔唑的化合物在所有情况下都显示 TADF。更有趣的是,用咔唑供体取代的两种衍生物在分散在聚合物基质中时具有 TADF 活性,在室温下以纯膜(微晶形式)的形式呈现磷光性。
图3。激子训练转换的物理机制,可实现巨大的调制。(a)在不同v g处的RT PL光谱。PL光谱的Lorentzian拟合和(B)V G = 0,(C)V G = 0.75V,(D)V G = 1V,(E)V G = 2V的相应反射率光谱。(f)电子带结构的示意图,用于指示激子曲线转换的光物理。(g)在不同V g的0V,0.5V和0.75V的光学设备中单层WS 2的时间分辨PL。(h)基于不同v g处的时间分辨PL的寿命拟合。
摘要我们使用时间分辨的红外红外振动光谱法研究了多共符型型延迟荧光(TADF)分子DABNA-1中的光物理特性与激发态详细特性之间的相关性。与密度功能理论计算相比,指纹区域的独特振动光谱与1000-1700 cm -1的模拟光谱相比,我们发现了最佳的计算条件。根据计算,我们确定了最低激发单元(s 1)和三重态(t 1)状态的激发态几何和分子轨道以及基态(s 0)。我们揭示了t 1和s 0之间电势表面的相似性抑制了非辐射衰减,并通过TADF工艺引起高荧光量子产率。