有机发光二极管研究面临的挑战之一是利用电致发光过程中不可避免产生的三线态激子来提高器件效率。其中一种方法是通过热激活延迟荧光,即单线态激子向上转换为单线态,使其辐射松弛的过程。这一现象的发现引发了对能够有效利用这一机制的新材料的探索。从理论的角度来看,这需要能够估计候选分子光物理中涉及的各种过程的速率,例如系统间窜改、反向系统间窜改、荧光和磷光。我们在此提出一种方法,能够在单一框架内计算所有这些速率并预测新分子的光物理。我们将该方法应用于两个 TADF 分子,并表明结果与其他理论方法和实验结果相比更具优势。最后,我们使用动力学模型来展示计算速率如何协同作用产生不同的光物理行为。
原理:由于受激发射,光子在每个步骤中成倍增加,从而产生一束强光子,这些光子是相干的并且沿同一方向运动。因此,光通过受激发射的辐射被放大,称为激光。 活性介质 可以实现粒子数反转的介质称为活性介质。 活性中心 原子被提升到激发态以实现粒子数反转的材料称为活性中心。 1.7 泵浦作用 在介质中实现粒子数反转的过程称为泵浦作用。它是产生激光束的基本要求。 泵浦作用的方法 常用于泵浦作用的方法有: 1. 光泵浦(光子激发) 2. 放电法(电子激发) 3. 直接转换 4. 弹性原子 - 原子间碰撞 1. 光泵浦
B 1N 2 1.579 1.570 1.582 1.584 1.582 1.585 1.581 1.569 1.575 B 1N 21.556 1.571 1.582 1.555 1.582 1.554 1.581 1.569 1.575 N 2C 3 1.362 1.361 1.365 1.366 1.366 1.367 1.366 1.392 1.372 N 2C 31.379 1.385 1.365 1.377 1.366 1.374 1.366 1.392 1.372 N 2C 6 1.391 1.383 1.380 1.390 1.381 1.389 1.381 1.377 1.383 N 2C 61.364 1.360 1.380 1.367 1.381 1.370 1.381 1.377 1.383 C 3C 4 1.394 1.427 1.429 1.392 1.428 1.391 1.427 1.409 1.421 C 3C 41.421 1.429 1.429 1.420 1.428 1.419 1.428 1.409 1.421 C 4 C 5 1.466 1.391 1.391 1.468 1.389 1.465 1.388 1.396 1.386 C 4 C 5 1.393 1.390 1.391 1.390 1.389 1.390 1.388 1.396 1.386 C 5 C 6 1.387 1.439 1.442 1.389 1.442 1.392 1.441 1.459 1.442 C 5 C 6 1.446 1.438 1.442 1.447 1.442 1.447 1.441 1.459 1.442 C 6 牛顿·米 1.364 1.328 1.330 1.365 1.330 1.364 1.330 1.332 1.330 C 6 牛顿·米 1.306 1.329 1.330 1.305 1.330 1.305 1.330 1.332 1.330 C 4 X 2.051 2.088 2.097 1.847 1.876 1.670 1.718 1.09 1.090 C 4 十 2.093 2.089 2.097 1.878 1.876 1.722 1.718 1.09 1.090