通过低温扫描隧道显微镜和光谱学的低温扫描隧道显微镜和光谱研究,已经研究了在RU(0001)上生长的纳米结构上的外延地石墨烯(纳米结构上的外延石墨烯)上的非成激素的表面光学。存在空间位于前体被吸附的区域中的空间位置,并在电磁频谱区域进行努力访问的区域,在那里进行N-π *跃迁,允许将前体转化为100%。在最新的理论计算的帮助下,我们表明,这种高收率是由于传入的光以及随之而来的电子转移到前体的无弹性散射机制的有效人数。我们的发现是实验证实,表面状态可以根据对小分子的早期理论预测在复杂分子系统的表面光化学中起重要作用。
随机激光器,一个有趣的光子研究分支,通过利用混乱和增益培养基中的多个散射来产生激光发射。这些非常规激光器提供了潜在的优势,例如低成本的制造,宽光谱带宽和对外部扰动的抵抗力,但实现最佳性能需要对有助于其一代的因素有全面的理解。这项研究旨在通过对现有文献进行广泛审查来批判性地分析和评估这些因素。该研究主要关注材料特性,结构特征,光学泵送技术和影响随机激光产生的环境因素。我们的系统分析不仅会丰富对随机激光功能的当前理解,而且还为设计和优化这些激光器的各种应用程序(包括成像,传感和通信)提供了宝贵的见解。
摘要:光生自旋关联自由基对固有的自旋极化使其成为量子计算和量子传感应用的有希望的候选者。可以使用电子顺磁共振波谱仪通过微波脉冲探测和操纵这些系统的自旋态。然而,到目前为止,还没有关于基于磁共振的量子点上光生自旋关联自由基对自旋测量的报道。在当前的工作中,我们制备了染料分子 - 无机量子点共轭物,并表明它们可以产生光生自旋极化态。选择染料分子 D131 是因为它能够进行有效的电荷分离,而选择纳米粒子材料 ZnO 量子点是因为它们有希望的自旋特性。对 ZnO 量子点 - D131 共轭物进行的瞬态和稳态光谱表明正在发生可逆的光生电荷分离。然后对光生自由基对进行瞬态和脉冲电子顺磁共振实验,结果表明:1)自由基对在中等温度下极化,现有理论可以很好地模拟;2)自旋状态可以通过微波脉冲获取和操控。这项工作为一种新型有前途的量子比特材料打开了大门,这种材料可以在极化状态下光生,并由高度可定制的无机纳米粒子承载。
摘要:本研究提出,激光脉冲可以产生有限振幅瑞利波,用于增材制造过程中的工艺监控。非接触式工艺监控使用脉冲激光产生瑞利波,并使用自适应激光干涉仪接收它们。文献中的实验和模型表明,有限振幅波形会随着传播距离而演变,甚至会在平面粒子速度波形中形成冲击波。非线性波形演变表明材料非线性,它对材料微观结构敏感,进而影响强度和断裂性能。测量是在定向能量沉积增材制造室内对平面 Ti-6Al-4V 和 IN-718 沉积物进行的。通过检测平面外粒子位移波形,还可以获得平面位移和速度波形。波形演变可以表征为 (i) 通过在不同点接收一个源振幅,或 (ii) 通过应用不同的源振幅在一个点接收。提供了针对有意调整的关键工艺参数的样本结果:激光功率、扫描速度和舱口间距。
月球表面或向火星任务的基础是人类太空的潜在目的地。这些方案构成了一些新的挑战,因为任务的环境和操作条件将与国际空间站(ISS)的环境和操作条件有很大差异。一个关键参数将是增加任务持续时间和与地球更远的距离,需要与地球资源尽可能独立的生命支持系统(LSS)。ISS的当前LSS物理化学技术可以回收90%的水,并从宇航员的呼出CO 2中恢复42%的O 2,但它们无法生产食物,目前只能使用生物学来实现这一食物。未来的LSS很可能包括当前正在使用的其中一些技术,但还需要包括生物组件。潜在的生物候选者是微藻,与较高的植物相比,其收获指数,更高的生物量生产率和更少的水。在过去的几十年中,已经研究了几种藻类物种的空间应用,这是一个有希望的和广泛研究的物种。c. ulgaris是球形单细胞生物,平均直径为6 µm。它可以在广泛的pH和温度水平以及CO 2浓度中生长,并且表现出高度抗跨污染和机械剪切应力的耐药性,使其成为长期LSS的理想生物。为了连续和有效地产生LSS所需的氧气和食物,微藻需要在良好的控制和稳定的环境中生长。因此,除了生物学方面,培养系统的设计,即光生反应器(PBR),也至关重要。Even if research both on C. vulgaris and in general about PBRs has been carried out for decades, several challenges both in the biological and technological aspects need to be solved, before a PBR can be used as part of the LSS in a Moon base.其中包括:对藻类的辐射影响,部分重力下的操作,选择用于耕种和食物加工所需的硬件,系统自动化以及长期性能和稳定性。
在低地球轨道(LEO)(例如,到月球)和长期任务(例如,到MARS)之外的人类空间探索仍然存在许多挑战。最大的问题之一是机组人员的可靠空气,水和食物供应。生物加成生命支持系统(BLSS)旨在使用生物反应器来克服这些挑战,以进行废物处理,空气和水的振兴以及粮食生产。在这篇综述中,我们着重于空间中的微生物光合生物过程和光生反应器,这些生物反应器允许去除有毒二氧化碳(CO 2)以及产生氧气(O 2)和可食用的生物量。本文概述了过去30年中BLSS项目的光生反应器和前体工作(在地面和太空中)进行的实验。我们讨论了不同的硬件方法以及对这些生物反应器测试的生物。尽管许多实验在地面上显示出成功的生物空气振兴,但对太空环境的转移远非微不足道。例如,在微重力条件下,气液转移现象不同,这不可避免地会影响培养过程和氧气产生。在这篇综述中,我们还强调了这项研究场中缺少的专业知识,为未来的空间光生反应器开发铺平了道路,我们指出了未来的实验,以掌握功能齐全的BLS的挑战。
原子移离平衡位置后,原子核会从电子云中移开。光子的电场会与原子核(电子云偶极子)产生共振(场是附加的),从而被吸收。硅、锗等共价材料往往是较差的光吸收剂。需要晶格振动才能在晶体中诱导偶极子,然后光才能被吸收=间接间隙。
摘要:研究表明,对人类头部进行近红外光颅脑光生物调节 (tPBM) 可以增强人类认知能力。本研究使用 111 通道功能性近红外光谱法对整个头部进行研究,研究了 tPBM 对静息状态大脑网络的影响。在 19 名成年人中,分别收集了接受和未接受 8 分钟 tPBM 的测量数据。分别使用皮尔逊相关系数和图论分析 (GTA) 对 tPBM 前、中、后期间的功能连接 (FC) 和大脑网络指标进行量化。我们的结果表明,tPBM (1) 提高了大脑网络的信息处理速度和效率,(2) 显著提高了额顶叶网络中的 FC,有助于更好地理解 tPBM 对大脑网络的影响。
简介:低强度激光(LLLT)治疗已用于减轻正畸治疗期间施加的力量所引起的不适和疼痛。目的:评估LBI应用对正畸牙移动过程中牙周膜受压初期痛觉的影响;并比较该疗法在两性之间的效果。材料和方法:样本包括 30 名志愿者,他们需要对第一下磨牙进行绑带处理。安装分离橡皮圈后,在照射侧的近远中根尖区(波长 808nm、能量 2J、时间 20s、能量密度 8.32J/cm2)及根区三处点位(波长 808nm、能量 1J、时间 10s、能量密度 4.16J/cm2)进行红外线 LLLT 照射,并与未照射的对侧第一磨牙(对照侧)进行比较,照射时间 3 个时间点为:0hs、24hs 和 48hs。通过在安装后 0 小时、24 小时和 48 小时解释视觉模拟量表 (VAS) 来评估疼痛感知,显著性水平为 5%。结果:观察发现,无论性别和时间如何,接受照射的一侧的疼痛程度明显较低(p<0.05)。无论时间和部位,女性的疼痛程度都明显高于男性(p<0.05)。时间之间没有显著差异(p>0.05)。结论:LBI 降低了通过弹性分离促进牙周膜压缩的患者的初始疼痛感知,并且在观察时间内女性表现出更高的疼痛敏感性感知。
治疗大脑条件。在此,我们提供了不同的鼻内光输送方法的摘要,包括基于鼻孔的便携式方法和植入有效的全身性或直接辐照大脑的深鼻方法。Nostril-based i-PBMT devices are available, using either lasers or light emitting diodes (LEDs), and can be applied either alone or in combination to transcranial devices (the latter applied directly to the scalp) to treat a wide range of brain conditions such as mild cognitive impairment, Alzheimer's disease, Parkinson's disease, cerebrovascular diseases, depression and anxiety as well as 失眠。证据表明,基于鼻孔的I-PBMT改善了血液流变学和脑血流,因此,I-PBMT在不需要刺穿血管的情况下,I-PBMT可能与外围静脉内激光辐照程序具有同等的结果。到目前为止,在临床环境中尚未对植入PBMT光源深处植入PBMT光源,但是模拟研究表明,通过曲折板和蝶骨窦深鼻中的PBMT可能是一种有效的方法,可以使前额叶和轨道方面的Cortex的腹膜部分传递光。使用廉价LED涂药器的家庭I-PBMT具有一种新型神经居住方法的潜力。比较研究还必须测试假手术和经颅PBMT。