摘要:单壁碳纳米管 (SWCNT) 的光物理因其在光收集和光电子学中的潜在应用而受到深入研究。SWCNT 的激发态形成强结合的电子-空穴对,激子,其中只有单重态激子参与应用相关的光学跃迁。长寿命的自旋三重态阻碍了应用,但它们成为量子信息存储的候选者。因此,非常需要了解三重态激子的能量结构,特别是 SWCNT 手性依赖的方式。我们使用专用光谱仪报告了对几种 SWCNT 手性的三重态复合发光(即磷光)的观察结果。这得出了单重态-三重态间隙与 SWCNT 直径的关系,并遵循基于量子约束效应的预测。在高微波功率(高达 10 W)辐射下的饱和度可以确定三重态的自旋弛豫时间。我们的研究敏感地区分了最低光学活性状态是从同一纳米管上的激发态填充的,还是通过来自相邻纳米管的福斯特激子能量转移填充的。关键词:碳纳米管、光学检测磁共振、弛豫时间、量子约束、分子标尺、福斯特激子转移 U
氧化亚铜 (Cu 2 O) 是一种具有大激子结合能的半导体,在光伏和太阳能水分解等应用中具有重要的技术重要性。它还是一种适用于量子光学的优越材料体系,能够观察到一些有趣的现象,例如里德堡激子作为高激发原子态的固态类似物。之前与激子特性相关的实验主要集中在天然块体晶体上,因为生长高质量合成样品存在很大困难。本文介绍了具有优异光学材料质量和极低点缺陷水平的 Cu 2 O 微晶体的生长。本文采用了一种可扩展的热氧化工艺,非常适合在硅上集成,片上波导耦合的 Cu 2 O 微晶体就证明了这一点。此外,还展示了位点控制的 Cu 2 O 微结构中的里德堡激子,这与量子光子学中的应用有关。这项工作为 Cu 2 O 在光电子学中的广泛应用以及新型器件技术的开发铺平了道路。
在本研究中,我们利用傅里叶变换红外光谱 (FTIR) 和拉曼光谱法分析了硅 (n-Si) 样品及其含镝 (n-Si-Dy) 组合物的结构和光学特性。FTIR 光谱中的特征峰如 640 cm -1 (Si-H 模式) 和 1615 cm -1 (垂直拉伸模式) 被识别,表明了材料的结构特征。n-Si-Dy 光谱中在 516.71 cm -1 和 805 cm -1 处出现的额外峰表明镝对材料结构和缺陷的影响。对频率范围 (1950–2250 cm -1 ) 的检查进一步证实了与缺陷和与镝相互作用相关的局部振动模式。在 2110 cm -1 和 2124 cm -1 处发现了与 Dy-Dy 拉伸以及与硅相互作用相关的峰。拉曼光谱分析表明,在退火过程中形成了硅纳米晶体,XRD 结果证实了这一点。所获得的结果为了解镝对硅材料结构和性能的影响提供了重要的见解,这可能在光电子学和材料科学中得到应用。关键词:硅、镝、稀土元素、拉曼散射、扩散、热处理、温度 PACS:33.20.Ea,33.20.Fb
摘要:将新材料作为硅在光子设备中的应用一直是科学界的关注中心。二维(2D)材料表现出很大的能力,可以替代这种障碍。石墨烯由于其独特的特性(例如高迁移率和光学透明度),除了灵活性,稳健性和环境稳定性外,还具有光子学和光电子学发光的2D材料之一。据报道,有几种基于石墨烯的光电探测器,具有与各种能量热电,电磁和压电设备集成的能力。但是,由于其带隙限制,原始石墨烯不适合在红外区域检测合理信号。在这项工作中,使用石墨烯/金属插入的石墨烯光电探测器证明了基于石墨烯的近红外检测。使用化学蒸气沉积(CVD)在Cu底物上生长插烯石墨烯,并将层湿转移到Si/SiO2底物上。已将锥形铝微电极用于电触点,以改善照明过程中光生载体的检测。证明了红外检测,在室温下测试了反应性和量子效率,并解释了光生的机理。
电子与电气工程实验室 电子与电气工程实验室 (EEEL) 的研究项目涵盖了电气、电子、电磁和光电材料、组件、仪器和系统的几乎所有关键学科,并侧重于计量学。实验室在马里兰州盖瑟斯堡和科罗拉多州博尔德设有实验室;其年度预算约为 8000 万美元。EEEL 的项目涵盖以下领域的测量和相关研究:(1) 基本电气单元;(2) 超导电子学和约瑟夫森结器件、量子霍尔效应器件和单电子隧穿现象的应用;(3) 高临界温度和低临界温度超导体、器件和系统;(4) 磁性材料、块体和薄膜,包括记录介质和磁头;(5) 硅和复合半导体材料、工艺和器件,包括功率器件;(6) 用于纳米级制造控制的测试结构; (7) 光电子学,包括光波通信和传感技术、激光器和光学记录;(8) 微波和毫米波材料、仪器、系统和天线,包括单片微波/毫米波集成电路;(9) 电磁兼容性和干扰,包括辐射和传导,包括电能质量;(10) 射频和微波/毫米波噪声;(11) 电介质材料
有机半导体(如共轭聚合物)具有优异的光学和电子特性,以及化学/结构可调性、良好的机械性能和溶液加工性,正在成为广泛商业化的无机半导体的可行替代品。1,2目前限制有机材料性能的一个缺点是其电子电导率低。通过在共轭聚合物主链上添加额外的正电荷或负电荷,可以通过电化学方式或使用分子掺杂剂对材料进行掺杂,可以将电子电导率提高几个数量级。3–6掺杂共轭聚合物在电致变色窗、光电子学、热电学和生物电子学方面显示出巨大的应用前景。3,4人们开发了各种分子掺杂方法,例如在薄膜沉积之前将聚合物和掺杂剂在溶液中共混合,或者依次通过气相或溶液相将掺杂剂添加到聚合物薄膜上。4,7分子掺杂剂起着双重作用。首先,它与共轭聚合物发生电荷转移,导致导电电荷的形成;其次,需要离子化的掺杂剂来补偿聚合物主链上的电荷。共轭聚合物表现出混合
针对机载光电系统探测性能难以评估的问题,本文提出了一种红外与微光传感器目标信息融合检测概率的定量计算方法,从目标与背景的辐射特性、探测器的传输特性和成像特性3个方面分析了影响目标检测概率的因素,建立了目标信息融合检测概率计算模型,基于模糊贝叶斯网络理论,根据机载光电传感器目标特点及威胁效果,给出了目标威胁评估的模糊贝叶斯网络模型。实验结果表明,当融合质量因子小于1时,融合图像的质量与源图像相比有所下降;通过贝叶斯网络算法得到了目标威胁,对威胁评估过程的仿真证明了模型的有效性和结果的可靠性。所提出的方法可以计算机载光电系统图像融合的目标检测概率,并对目标威胁进行评估。 (2017年3月30日收到;2017年10月10日接受)关键词:目标信息融合,检测概率,威胁评估,机载光电
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。
荣誉学位 :电子工程(5 年),主修光电子学 日期和地点:1989 年 7 月 14 日,巴勒莫大学 最后评价:满分,优异 论文及导师:激光直写微光刻工艺的开发和特性 S. Riva Sanseverino 教授和 C. Arnone 教授 政府资质:注册专业工程师,巴勒莫大学,1990 年 6 月 7 日 博士学位:电子、信息学和电信工程 日期和地点:1994 年 7 月 25 日,罗马 博士论文:激光直写微光刻:发展和新兴应用(巴勒莫大学) 现任职务:巴勒莫大学电子学副教授。担任过的相关职务: 2018年至今:负责控制论工程一级荣誉学位 2013-2016年:负责电子工程学位一级和二级 教学活动: 数字电子系统与实验室(2003年至今) 模拟与数字电子(2002-2005,2011) 电子设备(1993-1996 - 实验室) 意法半导体的“MOS结构:编程和擦除技术”。(1992) 硕士期间从事多项与智能建筑和能源效率相关的教学活动 主要活动:
MLE5003 材料科学与工程项目(8 个单元)MLE5208 光伏材料 MLE5210 材料建模与仿真 MLE5213 磁性材料 MLE5217 材料科学机器学习基础 MLE5218 人工智能材料发现 MLE5219 材料信息学:大数据的作用 MLE5220 材料有限元方法:基本概念和问题解决 MLE5221 可再生燃料和清洁水材料设计 MLE5222 用于能源应用的纳米和二维材料 MLE5223 可持续的合理材料设计 MLE5224 材料降解 MLE5225 可持续的电活性材料 MLE5226 未来可持续发展挑战的问题解决 MLE5228 超导和超导器件 MLE5229 微电子先进材料 MLE5230 微电子材料特性MLE5231 有机和纳米晶体光电子学 MLE5232 电介质材料及应用 MLE5233 未来的功能电子设备 MLE5234 光学材料:从量子光到纳米设备 MLE5235 二维材料 MLE5236 新型量子材料中的电子传输 MLE5238 生物电子学 MLE5239 生物界面材料 MLE5240 可持续性集光材料 MLE5241 机器人材料 MLE5243 材料人工智能最新主题 MLE5244 量子光子学材料与设备
