偶氮苯分子开关通过E和Z异构体之间的光异构化广泛用于感光材料的特性和细胞培养中的生物学活性。但是,由于人口拍照不完整,因此它们的动态财产控制范围通常很小。而且由于它们不能用红色/NIR光进行操作,因此通常不适用于深层组织。在这里,我们在活组织中> 700 nm> 700 nm,证明了一种有效的偶氮烯和谷氨酸受体活性的单光子光控制的通用方法。我们使用红色/NIR发色团辅助机进行分子内能量转移到生物活性偶氮烯,该偶氮烯驱动了快速散装Z→E同源化,甚至达到> 97%的完整性。辅助/偶氮苯二元组允许使用光子效率进行> 700 nm的照相,甚至可以比紫外线区域中直接偶氮苯E→Z同源化的光子效率更高;它们具有生物相容性和光稳定性。至关重要的是,它们的性能属性是固有的,即基于辅助的分子内切换将在任何稀释下进行相同的性能,并且不会受到生物分布的影响。我们表明,这些二元组可以由大多数偶氮苯系统(大多数辅助发色团)直接创建,而无需棘手的分子重新设计或重新计算。在概述了可以指导其更广泛采用的一些基于辅助的照相的规则之后,我们通过使用Dyads来首次演示对生物学活性,细胞培养和完整脑组织的首次演示。
发光太阳集合器(LSC)是一种光浓缩设备,比其他光学方法具有多种优势,例如使用散布光和吸引人的美学作用的可能性,这使其成为其在建筑城市环境中构建城市设置的整合的理想技术。为了提高其有效性并促进大规模采用,降低生产影响并延长其寿命的解决方案将非常有益。光稳定性对于LSC中使用的流体团至关重要,因为它们必须忍受多年来延长的阳光暴露。紫外线辐射可以改变有机发射器的结构,降低LSC效率并引起面板替代,并具有经济成本和环境影响。在这项研究中,将两种推动染料组成,其中包括静脉内包含的含量,即peri2f和nap2car d,作为使用化学再生单体(R-MMA)制造的基于散装PMMA的LSC的发射剂(R-MMA)。与使用Virgin Monomer相比,平板生产的全球变暖潜力大约小于四倍,从而增强了大规模LSC制造的可持续性和鼓励的循环。最有效的Peri2F/R-PMMA系统的H DEV的HED为0.7%,低于包含最先进的发射器LR305的设备。非常明显地显示出对光降解的抗性远大的。预测分析估计,使用约1年后,含有100 ppm的peri2F的LSC可以匹配R-PMMA的LR305性能,而初始排放强度降低了2%。©2024作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
金泽大学自然科学与技术研究生院,日本金泽 920-1192 (tfuruyama@se.kanazawa-u.ac.jp) 酞菁 (Pcs) 和相关大环化合物 (azaporphyrinoids) 是现代材料化学中众所周知的人工染料。迄今为止,已提出了几种对其光学/电化学/芳香性质进行微调的策略。有机合成提供了各种各样的有机分子。Pcs 的多样性提供了新颖的功能,这是创新科学的源泉。我们小组专注于 Pcs 的化学合成,包括“生产新型 Pcs 的受控反应”和“使用 Pcs 的受控反应”。本讲座将讨论 Pc 化学中受控反应的最新成果。五价磷 (P(V)) 的高电负性和高价态有望改变 Pcs 的光谱性质。我们开辟了一种合成策略来制备 (aza) 卟啉 P(V) 复合物。这些配合物由于与外围取代基的结合而具有独特的物理性质 [1]。最近,Si(IV) Pcs 与其轴向配体之间的协同效应也被发现。吸收近红外 (NIR) 的亲水性 Si(IV) Pcs 在近红外光照射 (810 nm) 下表现出高效的光动力学活性 [2]。Pcs 的化学选择性合成是一个重要的课题,但尚未引起太多关注。我们提出了一种新颖的 Pb 介导合成方法,通过该方法合成了带有吸电子基团的 Pcs 材料。这些材料可产生高水平的单线态氧并表现出高光稳定性 [3–4]。在研究 Pc 衍生物的过程中,我们成功合成了一种新型球形金属配合物,它可以吸收近红外区域的光。各种 Pc 前体都用于合成对称和低对称性配合物。结论是,谱带位置和氧化还原电位可以独立调节 [5–6]。Pcs 的精细可调性使得开发一种利用远红光到近红外光的新转化方法成为可能。我们开发了几种用于有机分子转化的近红外催化剂。这些反应进一步表现出对蓝光到绿光吸收功能材料的化学选择性,即使在屏蔽条件下也具有高反应活性 [7–8]。总之,我们小组进行了广泛的基于 Pc 的研究,包括开发 Pcs 生产的合成方法及其受控反应。这些成就为近红外光的灵活应用创造了更多机会。
核碱基。6尽管从那时起,众多CT状态的示例已在不同的修饰和DNA的天然形式中得到了证实,但控制此过程效率的关键因素仍然是晦涩的。因此,对能够执行效果紫外线诱导的电荷转移的DNA序列的预测仍然是一个挑战。在不同的过程中,可以通过DNA中的电荷分离触发的不同过程,环丁烷嘧啶二聚体(CPD)的自我修复最近引起了很大的关注。15,16 CPD是DNA暴露于紫外线的最常形成的光子,其最具特征性的结构元素是在两个相邻的嘧啶碱基之间形成的环丁烷环。17 - 21形成该环丁烷环的形成影响糖 - 磷酸骨架的结构,并排除了生化活性,例如DNA复制和转换。21,22在生物学中,CPD修复酶,例如光酶,通过从avin腺嘌呤co因子注入电子,修复病变,从而吸收可见光。23 - 27类似地,表明特定的c dNA序列或替代核碱基通过光诱导的电子转移触发非酶DNA自修复。16,28 - 30最突出的DNA自我修复例子被证明了代表CPD的损坏的GAT] T序列(“]”),以及位于CPDS的附属物中的2,6-二氨基嘌呤(D)和8-氧气胰蛋白酶(d)和8-氧气(O)核苷酸酶。尤其是31,32,描述了GAT] T序列是在其光激发时从鸟嘌呤转移的顺序电子转移。3133 - 35换句话说,非酶DNA自我修复的产率是表现出有效的光诱导电荷分离如何在特定的C DNA序列中发生的,以及CT状态的寿命是否很长以使光化学反应很长。值得强调的是,CPD的高度有效的自我修复大大提高了特定序列的光稳定性,并被认为是从丰富的随机序列库中的原始RNA和DNA寡聚物的可能选择因子。1,15,36,37更重要的是,已经提出了紫外线作为核苷酸选择性益生元合成的关键能源之一。38 - 46这导致上述D和O核碱基作为与规范核酶相比,由于其改善的电子含量和CPD更换特性,因此将上述D和O核酶视为第一个信息聚合物的潜在组成部分。尤其是31,32,47,含有D核苷酸酶和T] T二聚体的DNA三核苷酸显示可修复CPD,当在280 nm处受照射时,产量达到92%,因此,D可以保护DNA在预防性的情况下将DNA低聚物保护在光电座上。
目前,纳米 / 微粒子被广泛应用于各个领域 [1-3]。银粒子由于其独特的光学-物理-化学性质,是各类粒子中最为重要的材料之一。该材料已被提议用于各个领域,如生物传感器、诊断、成像、催化剂、太阳能电池和抗菌 [4-14]。特别是,与尺寸相关的独特等离子体特性使粒子在生物医学应用方面表现出色 [15-20]。鉴于银材料的重要性,第一版《银纳米 / 微粒子:改性与应用》于去年成功出版,其中收录了 10 篇优秀论文 [21-30]。该特刊 2.0 版还提供了详细介绍银材料合成、改性和应用的原创贡献。其中收录了 11 篇优秀论文,描述了银纳米 / 微粒子领域最新进展的示例。由于银纳米粒子具有非破坏性、快速性、分子指纹识别和超灵敏及光稳定性等特性,其等离子体特性已被应用于基于表面增强拉曼散射 (SERS) 的有害物质检测 [31]。由于食用海鲜相关的组胺中毒会导致疾病,Kim-Hung 等人报道了使用等离子体银-金纳米结构通过 SERS 轻松检测组胺 [32]。他们使用该纳米结构通过 SERS 成功检测出组胺(LOD 为 3.698 ppm)。Pham 等人报道了使用含有纳米结构的内部标准基于 SERS 对农药进行灵敏和定量检测 [33]。在研究中,4-巯基苯甲酸标记的银-金纳米粒子用于灵敏和定量的福美双检测,检测范围为 240 至 2400 ppb,检测限为 72 ppb。银纳米粒子作为抗菌剂具有巨大潜力。Nakamura 等人综述了银纳米粒子的合成及其在预防感染方面的应用[34]。他们特别关注了环境友好型合成和抑制医护人员的感染。Nakamura 等人报道,紫外线照射可通过羟基自由基增强银纳米粒子的杀菌活性[35]。他们表明,紫外线照射银纳米粒子可有效增强其杀菌活性,这是因为银纳米粒子经紫外线照射后会产生活性羟基自由基,而这种活性羟基自由基具有抗菌活性。紫外线照射可快速增强银纳米粒子中活性羟基自由基的产生。银纳米线具有优异的导电性能,在热能和电子应用方面得到了深入研究。Mori 等人评估了银纳米线及其与碳纳米管复合材料在生物医学应用中的抗菌和细胞毒性特性[36]。Li 等人报道了一种简单、可持续且环境友好的方法,即通过自牺牲还原在竹子上装饰的介孔 TiO 2 薄膜中原位制造银纳米粒子,以合成具有高效抗真菌活性的纳米复合材料[37]。复合薄膜赋予的竹子对绿色木霉和柑橘假单胞菌表现出优异的抗真菌活性。由于复合薄膜具有高生物相容性、低成本和易于制造的特点,因此在竹子上原位制造银纳米粒子是一种可行的方法。
实验室孵化器是一种旨在为微生物增长的控制环境的设备,使科学家可以研究和培养各种类型的细菌,霉菌和酵母。该设备以热电的原理运行,其中热能通过保持一致温度的恒温器转化为电能。不同微生物的理想温度各不相同,嗜嗜性细菌需要37℃,霉菌和酵母需要28°。孵化器的温度控制系统依赖温度传感器,控制器和承包商来确保精确的温度调节。实验室孵化器具有不同的零件,包括内部由铝制成的双壁柜和外部不锈钢,用玻璃羊毛隔热以防止热量损失。存储容量的范围从20升到800升。门具有视觉观察的玻璃,并由石棉垫圈密封,以维持气密的环境,防止热空气逃生和非紧密空气进入。控制面板位于机柜外部,并包含用于控制孵化器的各种参数的开关,包括通过恒温器进行温度设置。一些孵化器配备了HEPA过滤器,湿度和CO2控制系统,提供了一个闭环环境,以最大程度地减少污染风险。根据其大小和目的,实验室孵化器可以分类为冷却或冷藏类型,这些类型可提供精确的温度控制和空气循环风扇,以维持房间内的新鲜度。2。3。4。5。这些先进的特征在生物学和微生物学研究环境中至关重要,在研究微生物中,需要精确的环境条件。孵化器在实验室环境中起着至关重要的作用,通过为各种生物文化的增长和维护提供受控的环境。可以使用不同类型的孵化器,每种孵化器都满足特定需求,例如保持温度在20-25°C之间的低温孵化器,控制水分水平的湿度孵化器以及模仿某些微生物所需的无氧环境的CO2孵化器。摇动孵化器将运动/动摇功能与温度和湿度控制相结合,非常适合分子生物学和遗传学应用。台式/标准孵化器是最常见的类型,提供了从环境到100℃的宽温度范围,使它们成为微生物学,动物学和医疗实验室的多功能工具。使用孵化器时,至关重要的是遵循安全指南,例如避免不必要的门开口,保持适当的温度设置以及定期清洁以防止污染。维持微生物生长环境条件的最佳条件至关重要。孵化器中的热电机理维持各种应用的稳定参数 - 微生物培养物,细胞生长或温度敏感的过程。玻璃羊毛绝缘材料可减少能源使用,同时保持稳定的内部环境。6。7。玻璃羊毛隔热材料可减少热量损失和电力消耗,而架子在内壁上的内向延伸支持。门具有一个绝缘设计,带有一个玻璃面板,可在不打开的情况下观看,并带有一个易于操纵的手柄,控制面板在外墙和房屋的开关和指示器上进行了启动,包括固定式固定量。调整。穿孔的架子允许热空气流通,而在某些型号中可拆卸的架子有助于彻底清洁。AsbestosDoor垫片在机柜和门之间提供近水密封,防止外部空气浸润并保持隔离状态。湿度和气体控制机制调节内部的相对湿度和二氧化碳浓度。控制面板具有各种开关和指标,用于精确管理温度和湿度等参数。Inner投影支持架子,确保适当地放置培养基。用于实验室使用的孵化器:类型,功能和操作程序有各种类型的实验室孵化器可用,每种培养箱都旨在满足特定的需求和需求。用于温度监测--------------------------------------高级型号具有HEPA过滤器,以减少气流的污染,从而创建一个闭环系统,用于内部清洁空气。湿度和气体控制器还使用水库调节二氧化碳水平。实验室中的孵化器类型-------------------------------------------------------------------------- 1.8。9。冷却的孵化器:通过内部冷却系统和精确的温度调节,将温度保持在环境条件以下。摇动孵化器:结合了搅拌和温度控制,以实现最佳细胞发育,尤其对细菌培养和酵母生长有用。便携式孵化器:在偏远位置进行微生物测试,从而降低了运输过程中样本恶化的风险。台式孵化器:从室温到100°C,带有警报和带有时间和温度显示屏的玻璃门。二氧化碳孵化器:创建与人体环境相似的条件,保持37°C的温度,湿度超过90%,并且用于生物细胞培养的中性pH值。BOD孵化器:保持20-25°C之间的温度,非常适合生长酵母,霉菌和生物氧需求测试。光孵化器:模拟种子和植物的自然生长条件,同时进行各种材料的光稳定性测试。厌氧孵化器:创建无氧环境,对于培养挑战性厌氧生物所必需的无氧环境。恒定的温度和湿度孵化器:利用精确的控制系统来创建生物技术测试和工业研究所需的各种环境模拟条件。10。模拟孵化器:最简单的选项,尽管精确且缺少显示板以显示实际的腔室温度。11。数字孵化器:更昂贵但用户友好的设备,具有卓越的精度,并具有显示实时室内温度读数的显示板。2。3。4。5。孵化器的操作程序--------------------------------------------------------------- 1。电源:在进行任何操作之前,请确保与电源插座的安全连接。主电源开关:将其打开以开始计算机的初始化过程。红色功率旋钮:将此控件从0位置旋转到1,以正确激活系统。冷却机制:将冷却拨盘从位置0转到1以进行适当的温度调节。温度校准:通过使用“设置点-1”设置下较低温度将较低温度设置为21°C,同时用螺丝刀调整螺钉和RST螺钉。6。上限设置:按“设置点-2”将23°C建立为上阈值,同时修改设置/rst螺钉。7。温度监测:每天,早晨和晚上两次保持温度的适当记录,以获得最佳结果。实验室孵化器的使用在各个领域都广泛。这些设备为生长的微生物提供了最佳条件,并保持了长时间的生存能力。它们还用于生化研究,晶体发育,组织培养和环境监测。要有效地操作孵化器,必须执行操作前检查以确保从腔室中删除以前的项目,除非需要同时培养需要相同参数的多种生物体。在打开之前,应牢固地关闭门,并适当加热到通过温度计验证的所需温度。需要量身定制孵化周期,以满足最佳微生物生长的特定要求。参数构型可以为特定的二氧化碳浓度和湿度水平设置,如果需要特定的生物体生长。一些孵化器通过用胶带密封板来提供扩展的孵化,或者在最后的门锁和时机之前将其放在塑料容器中。这些仪器用于各种应用,例如微生物培养,培养,增强生长,生化研究,动物学应用,样品保存,食品分析,药物研究和晶体发展。实验室孵化器的优势包括能源效率,参数定制和环境稳定性。但是,它们也有诸如门管理之类的局限性,该局限性需要仔细处理以防止对存储的样品的污染风险,并且参数限制,这意味着只能一次在特定的环境条件下维持不同的文化。设备需要大量的金融投资和熟练的人员,以进行适当的运营和维护程序。预防措施以在扩展操作期间维持无菌环境,包括在孵化器架子下倒无菌水,以防止培养基变干。适当的参数监视对于确保在将培养板放置在机柜内之前确保所有必要的生长参数是必不可少的。这有助于为生物体开发创造最佳条件。培养板应始终将盖子放在底部的盖子上,以防止水冷凝到培养基表面上。定期清洁孵化器的内部对于防止有机体定居在货架上或在设备的拐角处收集至关重要。温度稳定性至关重要,应避免频繁的门开口,因为它可以显着影响机柜内部的细菌生长和发育。由于微生物敏感性,保持稳定的环境条件也很重要。必须在将培养板放入内阁之前建立和稳定。此外,必须采取凝结预防措施,例如倒置在底部的盖子倒置,以防止水凝结到生长培养基上。定期维护孵化器的内部,可以防止有害的生物体定居在表面和角落。在扩展操作过程中放置无菌水的位置也有助于维持媒体水分。导致不规则或不成功的孵化,至关重要的是要注意,卵孵育的理想温度可能会因孵化的卵种而异。例如,某些爬行动物和鸟类可能需要比鸡蛋的温度更高或较低。操作员应彻底研究其孵化的鸡蛋的特定温度要求,以确保将孵化器设置在正确的温度下。孵化器可以在没有电力的情况下起作用的持续时间取决于孵化器类型,鸡蛋阶段和环境温度等因素。但是,扩展的停电会导致卵失去水分,导致异常或失败的孵化。通常,为鸡蛋设计设计的孵化器通常可以承受几个小时而不会造成电力而不会损害鸡蛋的孵化器,前提是环境温度保持适中。在高级发育阶段的鸡蛋可能对温度和湿度波动更敏感,并且更容易受到停电的影响。在这种情况下,必须尽快恢复动力,以保持卵的最佳环境。如果孵化器长时间无电,则可能有必要丢弃鸡蛋并从新鲜的鸡蛋开始。氧气对于孵化器内的卵发育至关重要。卵内的胚胎使用氧作为生长和发育的能量来源。没有足够的氧气,胚胎可能无法正常发育,并且可能经历异常或失败的孵化。孵化器旨在为鸡蛋提供控制环境,包括调节氧气水平。大多数孵化器具有通风系统,可循环新鲜空气并保持设备内部的适当氧气水平。值得注意的是,卵孵育的特定氧气需求可能会因物种而异。某些鸡蛋可能需要比其他鸡蛋更高或更低的氧气水平。操作员应研究其孵化的卵的特定氧气需求,以确保最佳环境。孵化器通常不需要直接供水,因为鸡蛋不直接与水接触。但是,保持孵化器内的湿度对于卵发育至关重要。这可以通过控制二氧化碳水平或使用水锅或托盘来实现。后者是一个容器,可容纳水并调节孵化器内部的湿度。在孵化器中,水锅或托盘有助于保持理想的湿度水平。该水源应在孵化器内部蒸发并增加湿度时保持充足。特定的湿度需求因物种而异,因此操作员必须研究其孵化的每种鸡蛋的需求。