可控制发光颜色的可光控发光分子开关被认为是智能和发光材料之间的理想整合。剩余的挑战是将良好的发光特性与多种波长转化相结合,尤其是当在形成良好固定纳米构造的单个分子系统中构建时。在这里,我们报告了一个π扩展的光成色分子光电开关,该开关允许全面成就,包括广泛的发射波长变化(宽240 nm,400 - 640 nm),高光相异构范围(95%)和纯发射颜色(纯最高宽度)。我们采用调节合成和构造中分子内电荷转移的有利机制,并进一步通过简单的光控制实现了全颜色的发射。基于此,均具有光活化的抗相互作用功能和自我搜索的Photriting Fimm。这项工作将为智能光学材料的设计提供深入的了解。
光致变色分子的转化能力可产生明亮的光控制开关。光致变色分子是一类化合物,在辐照时在两种不同的形式之间表现出可逆的异构化,并具有特定的波长的光。这些分子具有广泛的应用,包括在数据存储/光学记忆中,生物成像和高灵敏度光学开关。10 - 15个PCM在纳米材料中也已广泛使用,它们提供了一种机制,它们提供了使用非侵入性的光间接控制纳米材料系统的组装和性能的机制,该光线具有非侵入性并允许高水平的远程空间分辨率。16 PCMs have been used in conjunction with nanoparticles (NPs) to switch a NP catalyst on/o ff , 17 to aggregate NPs and disperse them, 18,19 to control the uorescence levels of NPs between two states (both by using Förster resonance energy transfer (FRET) 7,20 and charge tunneling 8 ), to switch a NP system's magnetization, 21,22
摘要:底物表面的状态是某些有机化合物的升华方法产生的晶体形态的关键因素之一。在这项工作中,我们成功地准备了1,2-双(2,5-二甲基-3-噻吩基)全氟细胞烯(1A)的不同形态,这些晶体被分类为空心晶体和叶片样晶体,通过与玻璃表面相处,并与玻璃表面进行玻璃表面,并与水文表面相处。为了澄清玻璃基板每个表面上的晶体生长过程,我们研究了在升华的早期阶段附着在底物表面的米勒指数,并通过X射线衍射测量和极化显微镜散发器的晶体面晶体的晶状体生长方向和晶体生长方向。结果表明,在早期和升华阶段产生的晶体面之间的异质结会导致两种不同的晶体形态。此外,已经证实,异质结在这些晶体面之间的特定方向上发生,因为这些晶体面上的晶格点非常吻合。最后,我们展示了空心和羽毛状晶体的光学行为。
光致变色分子在光刺激下会改变其物理化学性质,包括吸收光谱、折射率、介电常数和氧化还原电位,具有从光学数据存储到生物成像等多种潜在应用。1–13 光致变色分子的用途可以简单地分为两种类型:作为单分子水平的开关或作为聚集体中的活性元素。具体而言,后者对于开发下一代先进材料非常有趣。例如,聚集体的典型形式之一是晶体。与晶体中的光化学反应相关的单个分子的分子结构变化会导致晶体形状的宏观变化。14–16 这种晶体可用于不需要任何电子线和物理接触的光致动器。聚集体的另一种代表性应用形式是纳米粒子。由光致变色分子和荧光团组成的纳米粒子基于从荧光团到光致变色分子的福斯特共振能量转移,表现出有效的光可逆荧光开/关切换行为。 17,18 这些纳米粒子可用于超分辨率荧光显微镜。此外,最近有报道称,强纳秒脉冲激光激发由
刺激响应性纳米平台的结构和特性对环境因素敏感,可用于按需释放药物到病理部位。1 然而,由于人体生理的复杂性,使用响应生理刺激(即 pH、酶和还原剂)的纳米粒子精确控制药物释放仍然具有挑战性。为此,已经开发出各种响应外部刺激(即光、超声波、电场和磁场)的药物输送系统 (DDS)。2 其中,光响应系统脱颖而出,因为光能够以高时空分辨率对目标释放进行远程和非侵入性控制。3,4 通常外部光用于影响光敏部分的化学结构和/或极性,例如偶氮苯、5 螺吡喃 6
信息的爆炸性增长及其广泛的可用性强调了对强大的加密和反对措施的需求。在这项研究中,CD量子点进行了设计(QD),以通过战略配体设计对单个触发器表现出多种视觉响应。表面工程方法允许QD在光激发引起的电子从CD(II)转移到CD(0)时从黄色变为黑色。表面配体在孔注入下解吸,导致QDS大小增加,并导致光致发光的红移。这种光激发引起的氧化还原反应揭示了前所未有的光致变色和光致发光现象,为先进的信息保护措施建立了基础。利用这些QD,在固态底物中实现了紫外线照射下的出色写作性能,而双模式加密系统则在凝胶矩阵中实现,为信息加密以及累积和交互式信息保护开放了新的途径。此外,CDS QD的氧化还原反应被用作3D打印的墨水,从而通过控制墨水中的氧气含量来调节光致变色的速率,从而创建具有数字可编程的材料。这一进步还阐明了3D打印技术的进度。
transitions.com Transitions 和 Transitions Signature 是注册商标,Transitions 徽标是 Transitions Optical, Inc. 的商标,由 Transitions Optical Ltd. 授权使用。GEN 8 和 Light Under Control 是 Transitions Optical Limited 的商标。©2022 Transitions Optical Limited。光致变色性能受温度、紫外线照射和镜片材料的影响。模拟镜片颜色用于演示目的。请您的眼保健专业人员进行演示,以便亲自体验 Transitions 镜片。镜框由 RAY-BAN ® 制造 - 镜片 Transitions ® 灰色。
我们展示了用于样品合成、制备和改性的设备,这些设备可在乌普萨拉大学 Tandem 实验室国家研究基础设施的离子注入机设施中使用中能离子束进行原位研究。集成仪器可实现受控薄膜合成、改性和特性分析,适用于研究近表面过程,例如薄膜生长、相变、氧化、退火、催化或离子注入。我们描述了可用的仪器及其规格,并展示了四个演示实验,特别关注获得的原位能力,涉及 1) 薄膜的蒸发和热合金化 - 镍硅化物 2) 反应磁控溅射和受控氧化 - 光致变色 YHO 3) 溅射和低能注入 - 钨中的氢和 4) 敏感系统的表面清洁 - 自支撑硅膜。
摘要:在日常生活中,假冒伪劣产品特别是货币、药品、食品、机密文件等,会带来十分严重的后果,发展具有多层次安全性的防伪认证技术是克服这一挑战的有力手段。在各种防伪技术中,荧光防伪技术以其材料来源广泛、成本低廉、使用简便、隐蔽性好、响应机制简单等特点,被广泛用于打击造假者。螺吡喃因具有可逆的光致变色性质,在防伪和信息加密领域受到科学家的青睐。本文对目前可用的螺吡喃基荧光材料从设计到防伪应用进行了综述,旨在帮助科学家设计和开发具有高安全性、高性能、响应速度快、防伪等级高的荧光防伪材料。