随着人们越来越关注政府和金融系统、医疗保健系统和军事通信等关键基础设施的安全通信,QKD 安全光网络的潜在社会影响也十分巨大。QKD 可以保护敏感的个人信息(例如医疗记录和财务信息)免受各种量子攻击和未经授权的访问。此前,印度空间研究组织 (ISRO) 成功演示了两个地面站之间的 QKD 链路,这是朝着开发安全的卫星通信系统迈出的重要一步。2020 年,印度政府宣布成立国家量子技术和应用任务 (NM-QTA),这是一项多机构倡议,旨在促进印度量子技术的开发和部署。NM-QTA 的重点是量子通信,其中可能包括 QKD。在启动 iCET 之后,印度内阁已批准约 6000 亿卢比用于国家量子任务,以加快该国在八年内量子技术的发展。虽然世界上第一个建立的量子网络是由美国国防高级研究计划局 (DARPA) 通过光纤在哈佛大学、波士顿大学和 BBN Technologies 之间建立的量子网络,但目前美国正在开展多个 QKD 计划和研究项目,这些计划和研究项目由美国能源部 (DOE)、美国国家科学基金会 (NSF) 等政府机构资助。
故事和照片由 Mickey Starling 撰写 麦迪逊本地人 Donnell Davis 对麦迪逊县的人们并不陌生。Davis 于 1996 年毕业于麦迪逊县高中,还拥有德克萨斯南方大学的工商管理学士学位。虽然他以其出色的烹饪技巧和通过 C & E Marketplace 提供的餐饮服务而闻名,但 Davis 主要是一名税务准备员,自 2014 年以来一直拥有并经营 Tax Pro Services。“餐饮不是我的初恋,但它已成为我的激情所在,”Davis 说。他之所以对餐厅和餐饮感兴趣,是为了回馈社区并帮助他人。“对于那些出狱的人来说,站起来重返社会尤其困难,”Davis 说。“我很高兴能够提供帮助。我不知道下一季会发生什么,但我已经完成了我被赋予的任务。”Davis 同样热衷于看到整个社区的进步。“当今的手机和技术对年轻人来说是一个挑战,”Davis 说。 “我的挑战是找到一些我可以融入其中,孩子们仍然会喜欢的东西。我想接触孩子们。我要指导和鼓励我遇到的孩子们。”由于他的背景,戴维斯觉得自己有资格接触年轻一代。“我在这里长大。我不是学校里最聪明的孩子,”戴维斯说。“你必须每天起床,努力工作。这对我来说更难,因为我不卖啤酒和香烟之类的东西。我的目标是让人们变得更好。这有时会让我成为一个恶棍,但我不会为了取悦别人而损害自己和我与基督的关系。”戴维斯致力于为他人服务,这带来了意想不到的祝福。一群年轻的学生被问到是否愿意表彰在最近的一场飓风破坏我们地区后所做的努力。他们看到戴维斯为没有电的其他人提供食物。年轻人选择了戴维斯,画了他的照片,并把这些照片送到了市场,以表达对他帮助的感谢。 “我甚至没想到他们会认识我,”戴维斯说,“他们的艺术作品表达了他们的欣赏,让我想起我正在感动生命。”戴维斯担心的另一个问题是一些孩子缺乏尊重。“我告诉我的妻子,如果
抽象的光纤网络正在迅速前进,以满足不断增长的交通需求。安全问题(包括攻击管理)对于光学通信网络而变得越来越重要,因为与光纤链接中的敲击光相关的漏洞。物理层安全性通常需要限制访问渠道的访问和链接性能的定期检查。在本文中,我们报告了如何利用量子通信技术来检测物理层攻击。我们提出了一种有效的方法,用于使用调制的连续变量量子信号来监视高数据速率经典光学通信网络的物理层安全性。我们描述了该监测系统的理论和实验基础以及不同监视参数的监视精度。我们分析了其启动和放大光链路的性能。该技术代表了将量子信号处理应用于实用的光学通信网络的一种新颖方法,并与经典监测方法进行了很好的比较。我们通过讨论其实际应用所面临的挑战,在现有量子密钥分布方法方面的差异以及在未来的安全光学运输网络计划中的使用情况。
标题:综合,超快的全光极化晶体管摘要:自从Dennard缩放大约15年前,处理器的时钟频率一直停滞在几个GHz处。尽管可以以THZ速度切换的全光晶体管可能会带来性能的飞跃,但由于低光学非线性和笨重的组件,在数十年的研究中无法实现这一承诺。现在研究了新一代设备的基础,这些设备的基础与新型材料和集成的光子结构利用了所谓的强光 - 互动制度,这些材料和集成的光子结构可以通过attojoule开关能量实现紧凑的超快全光逻辑回路[1,2]。在这项工作中,将提出朝着该目标的实验进展,包括级联的设置,其中自发的偏振子冷凝物是在一个腔(种子)中产生的,并喂入另一个空腔(晶体管)以诱导北极星冷凝[3,4]。此外,将提出亚皮秒时间尺度上的快速极性凝结动力学,并确定重要的晶体管指标,例如信号扩增(高达60倍)和开/关灭绝率(最高9:1)(最高9:1)。这些发现表明,可以开发可扩展的综合,超快全光晶体管的潜力,从而可以进行更复杂的全光逻辑电路。此外,将提出一种控制这些超快全光晶体管的方法,利用基于相位材料的记忆单元。这项工作由EU H2020 EIC Pathfinder Open Project“ Polloc”(授予协议号956071)。Photonics 13,378–383(2019)。899141)和EU H2020 MSCA-ITN项目参考文献[1] Anton V. Zideadeli,Anton V. Baranikov,Sannikov Deni,Urbon Darius,Scienty Fish,Woods。Shishkov,Evgeny S. Andrianov,Yurii E.Anton V. Zasedatele,“ Anton V. Baranikov,Urbon的Darius,Fabio Scianf,单科学,自然597, 493–497(2021)。[3] D. Urbons,“移动秋千入口的小动物”,eth diss。,no。26125,2019。[4] P. Tassan,D。Urbours,B。Climate,J。Bolten,T。Wahlbrink,M。C. Lemme,M。Forster,U.Scherf,R.F。Mahrt,T.Stöferle,超快完整性全光极化晶体管,” ARX:2404.01868V1,(2024)。
双眼立体视觉依赖于两个半球视网膜之间的成像差异,这对于在三维环境中获取图像信息至关重要。因此,与生物眼的结构和功能相似性的视网膜形态电子始终非常需要发展立体视觉感知系统。在这项工作中,开发了基于Ag-Tio 2纳米簇/藻酸钠纤维的半球光电磁带阵列,以实现双眼立体视觉。由等离子热效应引起的全光调制和Ag-Tio 2纳米群体中的光激发,以实现像素内图像传感和存储。广泛的视野(FOV)和空间角度检测是由于设备的排列和半球形几何形状的入射角依赖性特征而在实验上证明的。此外,通过构造两个视网膜形态的恢复阵列,已经实现了基于双眼差异的深度感知和运动检测。这项工作中证明的结果提供了一种有希望的策略,以开发全面控制的回忆录,并促进具有传感器内架构的双眼视觉系统的未来发展。
与经典相关(即非量化)。所有这些应用都需要高速开关,这可以通过光学信号的相位调制来实现。现有技术提供低损坏或高带宽解决方案,但并非同时提供。例如,纤维集成的电流调节器在商业上成熟,并且可以在纳秒时间尺度上提供相位调制。nev-这些设备的插入损失增加了一个实际的开销:减轻这些损失需要增加输入功率,中间放大器和废热管理[6]。此外,提高开关速度的功能可能导致现有基于半导体的电信设备的过时,从而推动了对全光开关技术的研究[7]。因此,在一系列应用领域中,需要更有效的光学调制技术。光子量子计算代表了我们对这项工作的实践动机。此平台出于多种原因吸引人,包括所有或多个组件的室温操作,高时钟率,高连通性,对流浪场不敏感和模块化结构。,但仍然是一个关键的技术挑战:以高速和极低的损失进行切换和动态重新旋转光子的要求。这是用于光子量化计算过程的各种过程中的重要阶段,例如实现:循环记忆[8,9],同步[10]或单光子源的多重[11,12,13]和图形状态生成[14]。放大量子量子相干性,因此无法使用
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
*相应的作者:陈的钟,希利龙·李(Shilong Li)和量子跨学科信息中心的haoliang Qian,现代光学仪器的国家关键实验室,信息学院和电子工程学院,中国杭州吉亚吉大学; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和Zhejiang University,Zhejiang University的国际联合创新中心,中国314400,电子邮件:hansomchen@zju.edu.edu.cn(H。chen),shilong.li@zju.edu.edu.edu.edu.cn(S。li)https://orcid.org/0000-0002-5735-9781(H。Chen)。https://orcid.org/0000-0000-0003-4200-9479(H。Qian)海顿王,Junru niu,Qiaolu chen,Hua Shao,Hua Shao and Yihao Yang Yang and Yihao Yang,跨学科跨学科的量子信息中心中国杭州310027; Zju-Hangzhou全球科学与技术创新中心,高江大学高级/纳米电子设备和智能系统的主要实验室,中国310027;和国际联合创新中心,ZJU-UIUC研究所,Zhejiang University,Haining 314400,中国Sihan Zhao,量子跨学科信息中心,硅和高级半导体材料的国家主要实验室,以及Zhejiang省级Quintum Technology and Quinjiang Province Quantum Technology and Decection of Quantum Technology and Decection of Physical of Physics of Physics of Physics of Physics of Physics,Zhejiang,Hungjiang,khejiang,khejiang,khejiang handjiang。https://orcid.org/0000-0003-2162-734x
* 通讯作者:陈洪生、李世龙、钱浩良,浙江大学信息与电子工程学院量子信息交叉学科中心、现代光学仪器国家重点实验室,杭州 310027,浙江大学;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,浙江大学;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,浙江大学,电子邮箱:hansomchen@zju.edu.cn (H. Chen)、shilong.li@zju.edu.cn (S. Li)、haoliangqian@zju.edu.cn (H. Qian)。https://orcid.org/0000-0002-5735-9781 (H. Chen)。 https://orcid.org/0000-0003-4200-9479 (H. Qian) 王海腾、牛俊如、陈巧璐、邵华和杨逸浩,浙江大学信息与电子工程学院现代光学仪器国家重点实验室量子信息交叉学科中心,杭州 310027,中国;浙江大学-杭州全球科技创新中心、浙江省先进微纳电子器件与智能系统重点实验室,杭州 310027,中国;浙江大学 ZJU-UIUC 学院国际联合创新中心,海宁 314400,中国 赵思涵,浙江大学物理学院量子信息交叉学科中心、硅与先进半导体材料国家重点实验室、浙江省量子技术与器件重点实验室,杭州 310058,中国。 https://orcid.org/0000-0003-2162-734X