Carol、Inˆes、inˆes、Lu´ıs、Peixinho、S´a、Sofia 和 Tiago 在 T´ecnico 度过了 5 年的友谊。感谢
神经科学的圣杯之一是记录大脑中每个神经元的活动,而动物自由移动并执行复杂的行为任务。最近在啮齿动物模型的大规模神经记录中采取了重要的步骤,但整个哺乳动物大脑的单个神经元分辨率仍然难以捉摸。相比之下,幼虫斑马鱼在这方面有很大的希望。斑马鱼是与哺乳动物大脑具有实质同源性的脊椎动物模型,但它们的透明度允许使用光学显微镜技术在单神经元分辨率下对遗传编码的泛型指标进行全脑记录。此外,斑马鱼从很小的时候就开始显示出复杂的自然行为曲目,包括使用视觉提示狩猎小型,快速移动的猎物。直到最近致力于解决这些行为的神经碱基,主要依赖于在显微镜物镜下固定鱼的测定法,并且实际上介绍了诸如猎物之类的刺激。最近在开发未固定的斑马鱼的脑成像技术方面取得了显着进步。在这里,我们讨论了最近的进步,特别关注基于光片显微镜的技术。我们还提请人们注意几个重要的杰出问题,这些问题仍有待解决,以提高所获得的结果的生态有效性。
抽象背景。全脑脑是罕见的(1/16,000个Livebirths),并且在早期胚胎发生期间发生严重的脑恶性肿瘤。畸形源于缺乏或不完整的前脑分裂,与改变的胚胎模式有关。目标。叙事审查,以识别和评估有关非遗传风险因素的证据。结果。所涉及的基因包括Sonic Hedgehog,锌指蛋白,六个同源物3。具有周围感受性高血糖的植物糖尿病是主要的非遗传危险因素。神经外胚层中氧化应激的增加,特别是神经rest细胞,似乎是主要机制。几种广泛的污染物,包括无机的ARSE-NIC,PFA和PCB,可能会通过改变元素因素(包括脂质和胰岛素)来增加造口前糖尿病的风险。“易感性受试者稀有暴露量”的情况表明,暴露于饮食污染物可能会增加植物前糖尿病的风险,因此在易感胚胎中会增加全脑脑的风险。结论。这种复杂的途径是合理的,值得研究;更重要的是,它突出了评估风险因素以及相关的不确定的重要性,以支持多因素畸形的主要预防策略。
现代神经外科的主要目标是治疗方法的人,以优化或预测个体的结果。1,2该领域的大多数工作都集中在遗传和分子策略上,其中将单个遗传或分子谱用于诊断,治疗和预测结果。3–5晚期神经影像学,例如扩散加权的IM摄入(DWI)和功能磁共振成像(fMRI),也已在临床上用于个性化治疗策略。例如,在神经学或癫痫手术之前,进行了DWI和fMRI,以定位白质区和雄辩的皮质。6–8外科医生通过考虑这些区域的位置来使用这些信息来量身定制切除策略。DWI也已用于在深脑刺激(DBS)期间个性化靶向。9,10这样的理由是,特定白质区的激活可能涉及
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
自监督学习 (SSL) 是一个丰富的框架,用于在大型数据集中获取有意义的数据表示。虽然 SSL 在计算机视觉和自然语言处理方面显示出令人瞩目的成果,但单细胞领域的多种应用仍需探索。我们研究 SSL 在空间分辨的单细胞 RNA 测序数据的细胞邻域中对细胞分类的应用。为了解决这个问题,我们开发了一个基于空间分子分析数据的 SSL 框架,整合了细胞在组织切片内的分子表达和空间位置。我们在大规模全鼠脑图谱上展示了我们的方法,记录了来自整个鼠脑的 59 个离散组织切片中 4,334,174 个单个细胞中 550 个基因的基因表达测量值。我们的实证研究表明,SSL 提高了下游性能,尤其是在存在类别不平衡的情况下。值得注意的是,我们观察到子图级别的性能改进比全图级别更显著。
。CC-BY-NC-ND 4.0 国际许可,根据 提供(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。它是此预印本的版权持有者此版本于 2023 年 8 月 28 日发布。;https://doi.org/10.1101/2021.10.27.466202 doi:bioRxiv 预印本
摘要 静息或任务期间的超慢血氧水平依赖性 (BOLD) 信号的一个显着特征是信号变化的准周期时空模式 (QPP),其涉及关键功能网络活动的交替和跨大脑区域的活动传播,并且已知与注意力和唤醒波动有关的超慢神经活动有关。这种持续的全脑活动模式可能会改变对传入刺激的反应,或者通过诱发的神经活动自我改变。为了研究这一点,我们向受试者展示了以 6 Hz 闪烁的棋盘序列。这是一种显著的视觉刺激,已知会在视觉处理区域产生强烈的反应。采用了两种不同的视觉刺激序列,一种是系统刺激序列,其中视觉刺激每 20.3 秒出现一次,另一种是随机刺激序列,其中视觉刺激每 14~62.3 秒随机出现一次。出现了三个主要观察结果。首先,两种不同的刺激条件从不同方面影响 QPP 波形;即,系统刺激对其相位有较大影响,而随机刺激对其幅度有较大影响。其次,与随机条件相比,系统条件下的 QPP 更频繁,连续 QPP 之间的间隔明显更短。第三,在两种条件下,对视觉刺激的 BOLD 信号反应在刺激开始时被 QPP 淹没。这些结果为内在模式与刺激大脑活动之间的关系提供了新的见解。
要了解大脑如何产生行为,我们必须阐明神经元连接与功能之间的关系。内侧前额皮质 (mPFC) 对决策和情绪等复杂功能至关重要。mPFC 投射神经元广泛侧支,但 mPFC 神经元活动与全脑连接之间的关系尚不清楚。我们进行了全脑连接映射和光纤光度测定,以更好地了解控制雄性和雌性小鼠威胁回避的 mPFC 回路。使用组织透明化和光片荧光显微镜 (LSFM),我们绘制了投射到伏隔核 (NAc)、腹侧被盖区 (VTA) 或对侧 mPFC (cmPFC) 的 mPFC 神经元群的全脑轴突侧支。我们提出了 DeepTraCE(基于深度学习的追踪与综合增强)来量化透明组织图像中批量标记的轴突投射,以及 DeepCOUNT(基于深度学习的通过 3D U-net 像素标记进行物体计数)来量化细胞体。使用 DeepTraCE 生成的解剖图与已知的轴突投射模式对齐,并揭示了区域内类别特定的地形投射。使用 TRAP2 小鼠和 DeepCOUNT,我们分析了威胁回避背后的全脑功能连接。PL 是与 PL-cPL、PL-NAc 和 PL-VTA 目标位点子集具有功能连接的最高度连接的节点。使用光纤光度法,我们发现在威胁回避过程中,cmPFC 和 NAc 投射器编码条件刺激,但仅在需要采取行动避免威胁时才会编码。mPFC-VTA 神经元编码学习到的但不编码先天的回避行为。总之,我们的研究结果为定量全脑分析提供了新的和优化的方法,并表明解剖学定义的 mPFC 神经元类别在避免威胁方面具有特殊的作用。
国际脑实验室 *,布兰登·本森1,朱利叶斯·本森2,丹尼尔·比尔曼3,尼科尔·波纳奇4,马特·卡兰迪尼5,乔纳·卡塔里诺4,盖尔·盖尔·盖尔·乔伊斯6,安妮·K教堂7,杨教堂7,杨丹8,peter dayan 9,peter dayan 9,ej tatian 9,ej tatian,ej tatian,ej tatian of Eric Fables,Michele 10 Brie 4 6,Laura Freitas-Silva 4,Berk Gerçek6,Kenneth D Harris 5,Michael Hausser 5,Sonja B Hofer 12,Fei Hu 8,F´elix Hubert 6,Julia Hubert 6,Julia Hunten,79 Christopher Krasniak 10,Christopher Kraspher Kraspher Kraspher Krandon 11 13,Thomas D MRSIC-FLOGEL 13,Jean-Paul Noel 2,Kai Nylund 3,Alejandro 11,C.V。Rille Rossant 5,Noam Roth 3,Rylan Schaeffer 1,Michael Schartner 4,Michael Schartner 4,Yanliang Shi 11 16,奥利维尔(Olivier)和r ilana b witten 11