• 气体动力学与燃气轮机 • 发电 • 传热与传质 • 生产与运营管理 • 汽车工程 • 设施选址与布局规划 • 非传统能源 • 机械动力学 • 内燃机 • 液压机 • 制造技术 • 运筹学 • 制冷与空调 • 铸造与焊接 • 流体力学
最近,人们对量子鬼像的质量给予了极大关注[1-5],这不仅与理论上的重大差距有关,而且与实验中实现的空间分辨率明显不令人满意有关。至于由于发生参数散射的晶体厚度有限而导致的散焦效应,则根本没有提及。虽然这个因素对于使用的小孔径光学系统来说微不足道,但在未来,随着相对孔径和非线性晶体厚度的增加,必须考虑到这一点。鬼像[6]是解决研究光敏物体问题的选项之一,直接光学观察这些物体很困难。为了形成鬼像,需要一个相关光束源,其中一个与物体相互作用,另一个不相互作用(图1)。在物体通道中,探测器仅提供有关
建筑环境通过发射碳的建筑材料和建筑工艺有助于全球二氧化碳排放。在传统的施工方法中实现碳中性结构是不可行的,但在三十年前提出了基于微生物的施工过程,以减少二氧化碳的排放。随着时间的流逝,有关缩放,可预测性的问题以及微生物生长和生物量产生的适用性出现了,仍然需要解决以允许制造。在这种意见中,我们将讨论不“成长建筑物”本身可以实现的目标,而是要“成长环保的生物污染物”。,迄今已通过遗传性可操纵的微生物形成,提供了选择的选择,以增强这些途径对合成生物学和生物综合性的适用性。 这些过程也可以与产生水泥生产生物的其他有益特性相结合,例如抗菌特性和光合作用的碳固定。 因此,虽然我们还不能“种植建筑物”,但我们可以为建筑行业发展和设计生物处理。,迄今已通过遗传性可操纵的微生物形成,提供了选择的选择,以增强这些途径对合成生物学和生物综合性的适用性。这些过程也可以与产生水泥生产生物的其他有益特性相结合,例如抗菌特性和光合作用的碳固定。因此,虽然我们还不能“种植建筑物”,但我们可以为建筑行业发展和设计生物处理。
色差共焦技术使用白光源,光线通过具有高度色差的物镜。物镜的折射率将根据光的波长而变化。实际上,入射白光的每个单独波长将在距镜头的不同距离(不同高度)处重新聚焦。当测量样品在可能的高度范围内时,将聚焦单个单色点以形成图像。由于系统的共焦配置,只有聚焦的波长才会高效地通过空间滤波器,从而导致所有其他波长失焦。光谱分析是使用衍射光栅完成的。该技术将每个波长偏离不同的位置,截取一条 CCD 线,这反过来指示最大强度的位置并允许直接对应于 Z 高度位置。
受雇,按照学院的时间表通过互联网以同步视听模式上课,包括有限的接触课程。学生每学期应注册有限数量的学分。学生不得在 IIT Jodhpur 附近就业。学生必须出示雇主出具的 NOC 才能在 IIT Jodhpur 攻读该课程。与全日制普通学生相比,学生只能注册有限数量的学分。将指定每学分的学费。
摘要:这项研究的目的是评估在两个相关的辐射敏感性CHO10B2和IRS-20细胞(DNA-PKC中有缺陷)的两个相关细胞系中低和高线性能量转移辐射引起的DNA损伤。双链断裂。焦点的数量是细胞系和辐射类型的剂量的函数。然而,IRS-20细胞显示出比亲本cho10b2更高的焦点。在锂照射后,两种细胞系都观察到了焦点大小的增加。这可以归因于DNA损伤的簇。此外,锂诱导的每个核的较大焦点的数量随剂量增加,并与每个核的预期命中次数拟合。结论,γH2AX焦点大小提供了一种潜在的工具,可以表征与DNA损伤相关的细胞的内在放射敏性并比较不同质量辐射的影响。
执行摘要 3 1. 简介 4 1.1 印度的气候变化和极端高温 4 1.2 印度的热浪和相应风险 6 1.3 焦特布尔的高温风险 7 2. 为焦特布尔的高温应对做好准备 9 2.1 背景和城市地形 9 2.2 针对热浪和高温相关疾病的地方和国家治理 10 2.3 利益相关方研讨会 11 3. 焦特布尔高温风险脆弱性评估 13 3.1 背景 13 3.2 高温脆弱性评估 14 3.2.1 数据来源和方法 14 3.2.2 暴露 16 3.2.3 敏感性 16 3.2.4 适应能力 17 3.2.5 方法 18 3.3 结果和结论 18 3.4 风险评估的推导结果 23 4. 市政协调和应对计划 23 4.1 热浪计划实施 23 4.2 市政计划实施委员会 24 4.2.1 高温预警系统 25 4.2.2 策略和活动(高温季节前) 27 4.2.3 策略和活动(高温季节) 29 4.2.4 策略和活动(高温季节后) 30 4.4 清单:夏季前和夏季措施声明 31 4.5 高温信息、教育和通信(IEC) 36 5. 长期战略 37 5.1 Mahila Housing Trust(MHT)部署凉爽屋顶 37 5.2 使用温度和死亡率数据进行阈值估计 39 5.3 监测和高温警报 40 5.4 利用文化作为管理极端高温风险的工具 40 6. 高温相关疾病监测(格式和SoP) 41 7. 合作伙伴致谢 47 8. 参考文献 48
<推进部门> NEDO 机器人与人工智能部部长古川义典 NEDO 机器人与人工智能部首席研究员三代川近宏 NEDO 机器人与人工智能部首席研究员柴田聪