在过去的几十年中,嵌入式系统在交通运输和工业控制系统等许多应用领域的功能性、可靠性和性能方面取得了巨大的进步。在这些领域,嵌入式系统通常在保证系统的整体安全方面发挥着至关重要的作用。这些系统被称为安全关键系统,因为它们的故障可能导致灾难性后果,例如生命损失或严重的环境破坏 [1](例如,汽车巡航控制 [2]、铁路信号 [3]、风力涡轮机完整性保护 [4]、心脏起搏器 [5])。为了降低造成此类死亡的风险,安全关键系统必须遵循根据特定领域的安全标准进行的严格认证流程。这个过程通常涉及大量的开发工作和成本。一般而言,安全完整性等级越高,安全认证成本越高 [6, 7]。此外,随着数字化趋势的不断增强,越来越多的功能由软件实现,嵌入式系统通常包含具有不同安全关键性的功能,这些功能还必须与非关键软件共存,从而符合混合关键性系统的要求。过去,混合关键性架构通常遵循联合架构方法,其中每个主要功能都部署在专用计算节点上。对附加功能的需求不断增长,导致计算节点、电线和连接器的数量增加。因此,这导致总体成本、复杂性、尺寸、重量和功率 (SWaP) 增加,在某些情况下限制了这种方法未来的可扩展性 [7, 4, 6, 8, 9, 10]。例如,在汽车领域,高档汽车在约 100 个计算节点上部署了超过 2000 万行代码 [11, 8],电子元件的附加值范围为传统汽车的 40% 至电动汽车的 75% [12]。当前的汽车发展目标是开发智能高级驾驶辅助系统 (ADAS) 和自动驾驶解决方案,这将进一步增加要集成的功能数量 [8]。一种可能的解决方案是转向集成架构方法 [7, 4, 6, 8, 9, 10],其中不同安全关键性的功能集成在数量减少的集中式计算节点和处理设备中。在这种方法中,安全认证成为一个挑战,因为混合关键性功能的集成需要证明实现的足够独立性和功能之间依赖性故障的足够低概率 [13, 14, 6, 7, 15]。此外,这种方法需要提高设备的整体计算性能,这可能通过多核设备和具有更高频率的单核设备来实现。由于对电磁干扰 (EMI) 的敏感性增加 [16]、散热风扇的可靠性低 [8, 4] 以及冷却系统的体积和重量 [17],使用具有更高频率的单核设备在多个领域被认为不具竞争力。另一方面,商用现货 (COTS) 多核设备在硅片制造商路线图中占据主导地位 [18, 19, 20, 12, 21, 22, 10],并提供跨领域潜在解决方案,例如汽车 [23, 15, 2]、航空电子 [24, 10]、铁路 [3, 25]、工业控制 [6, 26]、医疗应用 [5]。在这种情况下,基于多核设备的混合关键性系统的安全关键系统开发人员需要遵守两个有时相互冲突和矛盾的约束。一方面,基于过去几十年最佳安全工业实践的保守功能安全标准,没有或很少考虑多核设备(见
摘要背景:人工智能有可能彻底改变医疗保健,它越来越多地被用于支持和协助医疗诊断。人工智能的一个潜在应用是作为患者的第一个接触点,在将患者送往专家之前取代初步诊断,使医疗保健专业人员能够专注于治疗中更具挑战性和关键性的方面。但是,要使人工智能系统成功扮演这一角色,仅提供准确的诊断和预测是不够的。此外,它还需要提供(向医生和患者)关于诊断原因的解释。如果没有这一点,准确和正确的诊断和治疗可能会被忽略或拒绝。方法:评估这些解释的有效性并了解不同类型解释的相对有效性非常重要。在本文中,我们通过两个模拟实验来研究这个问题。对于第一个实验,我们测试了重新诊断场景,以了解局部和全局解释的效果。在第二个模拟实验中,我们在类似的诊断场景中实施了不同形式的解释。结果:结果表明,解释有助于提高关键重新诊断期间的满意度指标,但在重新诊断之前(进行初步治疗时)或之后(当替代诊断成功解决病例时)几乎没有影响。此外,关于该过程的初始“全局”解释对即时满意度没有影响,但改善了对人工智能理解的后期判断。第二个实验的结果表明,与没有解释或仅基于文本的原理相比,结合视觉和基于示例的解释与原理相结合对患者满意度和信任的影响明显更好。与实验 1 一样,这些解释主要影响重新诊断危机期间的即时满意度指标,在重新诊断之前或成功解决诊断后几乎没有优势。结论:这两项研究帮助我们得出关于面向患者的解释性诊断系统如何成功或失败的几个结论。基于这些研究和文献综述,我们将为医疗领域的 AI 系统提供的解释提供一些设计建议。
摘要 复合材料在飞机制造中的结构应用不断增加,但对于该行业来说仍然相对较新。与金属结构相比,复合材料部件的开发和认证成本很高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,因此是开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中感兴趣的缺陷与金属有很大不同。因此,高质量的复合材料参考标准对于获得可靠且可量化的 NDE 结果至关重要。理想情况下,参考标准包含的缺陷或损坏的 NDE 指示最接近实际缺陷/损坏造成的缺陷或损坏。它们还应该易于复制且制造成本低廉。美国宇航局的先进复合材料项目与行业合作伙伴合作,开发了一套复合材料标准,其中包含一系列经过验证的缺陷,这些缺陷代表了航空航天复合材料中常见的缺陷。本文将概述制造的标准、用于制造它们的制造计划、包含的缺陷类型以及已执行的验证测试。还讨论了针对这些标准进行的实验室间“循环”测试。本文将介绍一份正在编制的指导文件,该文件概述了复合材料特有的具有挑战性和关键性的缺陷的相关检查程序,而传统技术可能不适用。关键词:复合材料、NDE、标准简介在先进复合材料项目 (ACP) 中,NASA 正在与航空航天业的成员合作,以缩短开发和认证商用和军用航空器复合材料结构的时间表。NASA 和业界已确定三个重点领域或技术挑战,它们对当前的认证时间表有重大影响。一个重点领域,技术挑战 (TC2) - 快速检查,涉及通过开发定量和实用的检查方法、数据管理方法、模型和建模工具来提高检查吞吐量。TC2 的目标之一是开发用于快速定量表征缺陷的工具。复合材料在飞机制造中用于结构应用的采用持续增加,但对于该行业来说仍然相对较新,与金属结构相比,开发和认证成本相对较高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,并且是导致开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中值得关注的缺陷与金属有显著不同。因此,在 ACP TC2 框架下,NASA 启动了对航空航天工业中复合材料结构部件 NDE 的当前实践状态 (SoP) 的评估,并确定了哪些因素会影响复合材料的 NDE 过程。该评估涵盖了飞机工业的固定翼、旋翼和推进部分,并得到了航空工业相应部门的意见。评估确定了关键缺陷类型、当前检查方法、NDE 数据交换方法、适合自动化或改进的流程和方法,以及与复合材料检查和认证相关的其他问题