1分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系91分子微生物学和结构生物化学(MMSB,UMR 5086),CNRS&Lyon大学,法国里昂,里昂; 2法国斯特拉斯堡·塞德克斯大学(UMR 7177 CNRS,umr 7177 CNRS) 3 Pharmcadd,商,商,韩国; 4计算生物医学,高级模拟研究所(IAS-5)和神经科学与医学研究所(INM-9),德国尤利希的ForschungszentrumJülichGmbh; 5德国亚兴的亚历大学数学,计算机科学与自然科学学院生物学系; 6 Zymvol Biomodeling,西班牙巴塞罗那; 7JülichSuperComputing Center(JSC),ForschungszentrumJülichGmbH,Jülich,德国; 8德国亚兴大学rWth亚兴大学医学院神经病学系和韩国灌木丛大学的Pukyong国立大学物理学系9
谅解备忘录(MOU)。该研究旨在到2030年左右在北海道苫小牧地区西部建设一座每年可生产10,000吨以上绿色氢气的水电解厂(100MW或以上),这将是日本最大的水电解厂,并建立一条供应链,通过管道将利用丰富的可再生能源生产的绿色氢气供应给出光兴产和该地区的其他工厂。在政府于2023年6月修订的“基本氢气战略”中,从能源政策(S ++ 3E *1)的角度考虑,建立国内氢气生产和供应系统非常重要。此外,将剩余电力转化为氢气有望最大限度地利用该国可再生能源和其他零排放电源的潜力。
连。这些关系可以是“is_a”或“part_of”,形成了一个有向无环图(DAG)的结构。 GO注释是将基因产 物与GO术语相关联的过程,这对于理解基因的功能和进行基因表达分析至关重要。 GO注释的结果可 以用于多种分析,包括基因本体论富集分析,这是一种统计方法,用于确定在一组基因中哪些GO术 语的出现频率显着高于随机预期,从而揭示基因集的生物学功能。
摘要:实验证据表明,活性氧 (ROS) 的生成参与了缺氧诱导因子 (HIF)-1 α 的缺氧稳定以及随后肿瘤侵袭性和转移扩散促进剂的表达。然而,线粒体 ROS 在缺氧诱导的上皮间质转化 (EMT) 激活中的作用仍不清楚。本研究旨在验证以下假设:抑制缺氧诱导的线粒体 ROS 生成(主要在线粒体复合物 III UQCRB 位点)可能导致 EMT 逆转,此外还会导致 HIF-1 α 稳定性降低。通过评估乳腺癌细胞在用抗氧化剂处理 48 小时后对 ROS、HIF-1 α 和 EMT 标志物的水平,评估了缺氧诱导的 ROS 增加在 HIF-1 α 稳定性中的作用以及抗氧化剂(其中一些直接针对线粒体复合物 III)阻断 ROS 产生和 HIF-1 α 稳定性并防止 EMT 标志物变化的能力。还通过 RNA 干扰沉默其表达并评估其下调对 ROS 产生、HIF-1 α 水平和 EMT 标志物的影响来评估 UQCRB 在缺氧诱导的 EMT 中的具体作用。我们的结果证实了 UQCRB 在缺氧信号诱导 EMT 中的关键作用。因此,UQCRB 可能是开发能够通过阻断线粒体 ROS 产生来逆转 EMT 的药物的新治疗靶点。
人口增长、能源需求增加以及减少温室气体排放的迫切环境行动的需要对人类的能源转换过程的方法和实施提出了挑战,并要求仔细考虑用于设计和评估此类过程的工具和方法。在热力学范畴内,熵生成最小化、能量、能量能、第二定律和环境能分析方法是提供有关资源使用、转换效率和环境影响的定量信息的方法框架。这些方法结合起来,可以在我们未来能源基础设施(例如,增加可再生能源发电、氢能基础设施)的设计和优化中发挥重要作用。这篇小型评论的结构如下:第 2 节介绍能量和能量分析;第 3 节讨论熵生成最小化;第 4 节讨论环境能分析。目的是简要描述这些方法的核心方面,并引导读者阅读文献中进一步发展和说明核心思想的作品。
光合细菌(如红细菌)的固氮酶依赖性 H 2 生成已被广泛研究。使用基因操作增加 H 2 产量的一个重要限制是缺乏高通量筛选方法来检测可能的过量生产突变体。之前,我们设计了红细菌菌株,使其在 H 2 反应中发出荧光,并利用它们来识别导致 H 2 过量生产的固氮酶 Fe 蛋白突变。在这里,我们使用紫外线在工程 H 2 感应菌株的基因组中诱导随机突变,并使用荧光激活细胞分选从含有 5 × 10 5 突变体的文库中检测和分离 H 2 过量生产细胞。三轮诱变和菌株选择逐渐使 H 2 产量增加了 3 倍。对五种 H 2 过量生产菌株的全基因组进行了测序,并与亲本感应菌株的全基因组进行了比较,以确定 H 2 过量生产的基础。除了转录激活因子 nifA2 之外,与氮固定相关的已知功能没有发生突变。然而,一些突变被映射到能量产生系统和碳代谢相关功能,这些功能可以将还原力或 ATP 提供给固氮酶。在批量培养中,固氮酶抑制的时间过程实验揭示了固氮酶蛋白水平与其 H 2 和乙烯生产活动之间的不匹配,这表明能量受到限制。在恒化器中培养产生的 H 2 始终比相应的批量培养多 19 倍,揭示了选定的 H 2 过量生产菌株的潜力。
例如,现在研究表明,与其他基因相比,物种生存所必需的基因更频繁地通过细胞中的自然机制进行修复,即它们更不容易发生突变 (Huang & Li, 2018; Belfield et al., 2018; Monroe et al., 2022)。此外,染色体的结构和基因的位置都会影响突变率 (Halstead et al., 2022; Monroe et al., 2022)。此外,基因复制起着重要作用,尤其是在植物基因组中 (Wendel et al., 2016; Gaines et al., 2022)。生物特性,如杂草对除草剂的抗性,可以通过基因复制(Gaines 等人,2019)和建立备份功能(Jones 等人,2017)来培养。这些和其他最近的发现正在挑战经典的进化理论,即突变是随机发生的,与它们对生物体的影响(例如适应度成本)无关。
摘要 — 传统上,电力是由大型发电厂生产的。生产能源的成本与燃料成本(例如碳或天然气)以及维护发电厂的成本有关。随着分布式能源的出现,电力可以由一种新型主体直接在电网边缘生产:产消者。产消者是既消耗又发电的实体,例如通过光伏板。产消者生产的电力成本不再与燃料消耗有关,因为来自分布式发电机的能源基本上是免费的。相反,成本与产消者提供的服务应得的报酬有关。所提出的控制策略在上述情况下将有功发电成本降至最低。控制方案要求产消者测量其电压,然后根据连续时间反馈控制律(实际上是投影梯度下降策略)调整注入的电量。提供模拟以说明算法行为。
。cc-by 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本于2024年7月29日发布。 https://doi.org/10.1101/2023.02.17.528958 doi:Biorxiv Preprint
< 公司一览 > 同和控股株式会社 东通兴产株式会社 同和生态系统株式会社 CEMM 株式会社 同和金属矿业株式会社 同和技术研究株式会社 同和电子材料株式会社 同和技术工程株式会社 同和金属技术株式会社 YOWA ENGINEERING 株式会社 同和热技术株式会社 秋田工程株式会社 同和科技株式会社 堺矿业株式会社 同和管理服务株式会社 同和兴产株式会社 ECO-SYSTEM JAPAN 株式会社 同和工会 ECO-SYSTEM 秋田株式会社 同和健康保险协会 ECO-SYSTEM 三洋株式会社DOWA 互惠协会 ECO-SYSTEM CHIBA 株式会社 同和会(同和控股株式会社重组) MELTEC 株式会社 同和环境管理株式会社 冈山湖汤株式会社 BANGPOO 环境综合体有限公司 MELTEC IWAKI 株式会社 东海岸环境综合体有限公司 Soso Smart Eco-Company 株式会社 WASTE MANAGEMENT SIAM 有限公司 GEOTECHNOS 株式会社 WMS DEPOT 株式会社 ECO-SYSTEM HANAOKA 株式会社 MODERN ASIA ENVIRONMENTAL HOLDINGS PTE. LTD. E&E Solutions Inc. PT PRASADHA PAMUNAH LIMBAH INDUSTRI GREEN FILL KOSAKA 株式会社GOLDEN DOWA ECO-SYSTEM MYANMAR COMPANY LIMITED ECO-SYSTEM OKAYAMA CO., LTD. PT DOWA ECO-SYSTEM INDONESIA ECO-RECYCLE CO., LTD. Nippon PGM Europe sro ECO-SYSTEM RECYCLING CO., LTD. DOWA METALS & MINING (THAILAND) CO., LTD. Act-B Recycling Co., Ltd. DOWA METALS & MINING AMERICA, INC. ECO-SYSTEM KOSAKA CO., LTD. NPGM KOREA Co., Ltd. DOWA TSUUN CO., LTD. NPGM USA INC. BIODIESEL OKAYAMA CO,. LTD. DOWA ADVANCED MATERIALS (SHANGHAI) CO., LTD. HOKUSHU KANKYOU SERVICES CO., LTD. DOWA METALTECH (THAILAND) CO., LTD.小坂冶炼有限公司 同和新材料(上海)有限公司 日本 PGM 株式会社 同和精密(泰国)有限公司 秋田锌有限公司 多瓦利精密有限公司 秋田稀有金属有限公司 多和 METALTECH MEXICO,SAde CV 秋田锌解决方案有限公司 同和金属技术(南通)有限公司 秋田锌回收有限公司 多和 METALTECH 春武里饭岛兴产有限公司 多和 THT AMERICA,INC. 多和半导体秋田有限公司 同和热技术(泰国)有限公司 多和电子材料冈山株式会社 HIGHTEMP FURNACES LTD. DOWA IP CREATION CO., LTD. 昆山同和热炉有限公司 DOWA F-TEC 有限公司 PT.DOWA THERMOTECH INDONESIA DOWA METAL CO., LTD. PT.DOWA THERMOTECH FURNACES DOWA METANIX CO., LTD. DOWA THERMOTECH MEXICO SA de CV NEW NIPPON BRASS CO., LTD. DOWA INTERNATIONAL CORPORATION HOEI SHOJI CO., LTD. DOWA HD EUROPE GMBH DOWA HIGHTECH CO., LTD. 同和控股(上海)有限公司 DOWA POWER DEVICE CO., LTD. DOWA THERMOENGINEERING CO., LTD.