诺曼·穆迪(Norman Moody)于10月23日在维多利亚去世,享年88岁,是许多才华的人。他对多伦多大学的贡献是他在45年以上的独特而杰出的科学生涯中所做的贡献。是生物医学电子研究所的创始董事,随后是生物材料与生物医学工程研究所,以及电气工程学教授。所有这些都没有获得任何获得学位。诺曼于1915年12月22日在第一次世界大战的早期出生于英国赫恩湾。在1930年代初期经济萧条的情况下,如果没有进行正规教育的机会,但对无线电设计的兴趣浓厚,他的职业生涯始于一家大型伦敦商店的无线电维修区。在第二次世界大战之前的几年中,贝尔德(Baird)展示了电视的实际可行性,而五极管和超螺旋接收器已经成为现实。在1935年左右,诺曼(Norman)加入了Halcyon Radio最初以初级工程师的身份从事无线电接收器设计工作,并升任高级电视设计师的位置。接下来是为期一年的设计工程师,在电视研究中与BurnDept Radio进行了设计工程师。在早期的电视设计是一种艺术,需要特殊的实用技能,创造性的思想和巡回设计的才能。他的一些早期作品与投影电视计划的设计有关,但真正的面包和黄油在商用电视机的设计和销售中。当时的一个好系统以大约44几内亚的价格出售,相当于1930年代后期的200美元。正是在他与Halcyon Radio期间,他
授予:蝴蝶迁移的基因组和表观基因组特征(PID2023-152239NB-I00)项目概述:我们正在邀请诸如研究蝴蝶中迁移行为的基因组和表观基因组的PHD职位的应用。该项目旨在发现影响蝴蝶迁移的关键遗传特征和监管机制,以响应环境提示。重点领域包括适应迁移鸿沟,运动方向的季节性转移,感觉基因家族的演变以及对快速环境压力源的表观遗传反应。该研究将涉及实地研究,实验室行为研究以及基因组,转录组和表观基因组数据的分析。博士计划将在此框架内灵活,并根据其利益与选定的候选人一起量身定制。博士候选人将加入一个跨学科团队,并接受进化基因组学,动物行为和移民生态学的培训。地点:西班牙(www.ibb.csic.es)IBB IBB是巴塞罗那的研究中心,IBB是加泰罗尼亚的生物多样性研究中心领先的研究中心,为进化生物学,生态学和基因组学和基因组学的尖端研究提供了充满活力的学术环境。研究小组:候选人将加入昆虫迁移和系统多样性实验室(www.phylomigrationlab.com)。我们的实验室专门研究迁徙昆虫的行为,运动生态学,植物地理学和基因组进化。我们现任的团队包括三名博士生,一名实验室技术员,三名硕士学生,两个来访的学生和主要研究员(PI)。我们与乌普萨拉大学(瑞典),渥太华大学(加拿大)和爱丁堡大学(苏格兰)的同事保持着牢固的合作关系,并将鼓励研究留在国外。我们的实验室培养了我们团队和国际合作伙伴的协作和相互支持的文化。候选人要求:我们正在寻求一个对基因组学,昆虫学,生物信息学,植物地理学,进化和行为的兴趣浓厚的积极性的人。资格:•硕士学位与生物科学,生物信息学,遗传学或相关养育有关。•英语中出色的沟通技巧。•基因组数据分析,种群基因组学,进化论的经验和知识,
借助光,人们可以找到耗散最小的机制来影响磁化。[1] 在这方面,亚铁磁材料迄今为止对超快激光激发表现出最显著的响应,首先是用单个 40 飞秒激光脉冲观察到金属亚铁磁合金 GdFeCo 中的磁化转换。[2] 已证明该机制是通过激光诱导加热后的强非平衡瞬态铁磁相 [3] 进行的。[4] 后来,通过光诱导磁各向异性变化,在介电亚铁磁体中实现了磁位的非热光学记录机制。[5] 最近,人们发现这种亚铁磁性电介质还能实现一种新颖的热辅助磁记录 (HAMR) 机制,[6,7] 它不需要像 GdFeCo 那样几乎完全退磁,而是依赖于磁各向异性的温度依赖性。 [8] 这就提出了一个问题:磁各向异性的超快变化是否也会在金属亚铁磁体中发挥作用。然而,尽管人们对金属亚铁磁体的研究兴趣浓厚,但尚未讨论磁各向异性超快动力学导致的磁化动力学和最终的磁切换。在这里,为了研究磁各向异性的温度依赖性在金属亚铁磁体的激光诱导磁化动力学中的作用,我们考虑了亚铁磁 Gd/FeCo 多层。在过去的几年中,人们研究了激光诱导的稀土过渡金属 (RE-TM) 多层异质结构现象,并将其与合金进行了比较,主要关注全光切换。 [9–13] 在这方面,多层膜与合金相比最大的区别在于,由于 RE-TM 接触面积减小,且被限制在界面上,因此稀土和过渡金属自旋之间的有效反铁磁交换相互作用较弱。一个较少暴露的方面是结构各向异性对磁各向异性的影响,这种影响是由各向同性合金的层状排列引起的。也就是说,当界面处的对称性被破坏时,结构可以获得对磁各向异性的额外和可控贡献。[14,15] 通过对磁场和泵浦通量进行泵浦探测磁光测量,我们发现我们的多层膜中的激光诱导动力学与已知的
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了提示。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的衰减机制。衰减可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子电路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极
近年来,量子纳米光子学领域蓬勃发展,人们对新理论、新器件和新应用的开发兴趣浓厚。“量子纳米光子学”特刊通过评论、观点和研究论文重点介绍了该主题的一些最新进展。本期包含评论和观点文章,全面概述前沿主题。Chang 和 Zwiller [1] 回顾了使用纳米线的集成量子光子学的最新进展,重点介绍了集成发射器、探测器和制造方法。这篇评论还介绍了基于纳米线的量子信息处理和传感应用。Gali [2] 总结了从头算理论,以充分理解固态量子比特,它是量子光子装置中的重要组成部分。该计算方法已应用于激发态、光电离阈值、光激发光谱、有效质量态和自旋动力学的计算。这种方法可以提供超越传统密度泛函理论的洞见,因为传统密度泛函理论无法完全捕捉激发态的特性。生物技术正被用于各种量子光学和光子学,反之亦然。DNA 纳米技术利用 DNA 信息设计和制造用于技术用途的人工核酸结构,已被用于量子发射器领域。DNA 的奇异特性使我们能够在分子水平上抓住量子发射器并控制它们的指向器。Cho 等人 [3] 对相关研究进行了广泛的综述。相反,对量子光学中光物质相互作用的理解为研究化学和生物过程提供了线索。Kim 等人 [4] 综述了基于光与物质与光学谐振器相互作用的丛激子和振动极化子强耦合。作者从强耦合的基本原理、丛激子的结构和特性以及在化学和生物检测中的应用进行了介绍。Kim 等人 [5] 对基于光与物质相互作用的丛激子和振动极化子强耦合进行了综述。 [ 5 ] 讨论了纳米光子共振工程可以实现接近 1 的读出保真度,而这对于提高 NV 量子传感的灵敏度是必需的。该观点深入了解了 NV 量子传感的背景、共振结构的应用以及实际传感中剩余的挑战。Zheng 和 Kim [ 6 ] 讨论了钙钛矿基发光二极管的降解机制。降解可能发生在外部和内部过程中,从而对性能和稳定性产生不同影响。其中包括各种关于量子纳米光子学的研究文章。人们对优化可集成到光子回路中并实现实际应用的单光子发射器 (SPE) 的兴趣日益浓厚。Azzam 等人。[7] 展示了使用介电腔对 WSe 2 SPE 的 Purcell 增强。介电腔在 WSe 2 上施加定向应变分布,可以选择性地控制 SPE 的极化状态。徐等人 [8] 报道了一种基于纳米金刚石 (ND) 的高纯度 SPE,其硅空位 (SiV − ) 中心带负电,采用离子注入法。他们成功地阻止了 SiV − 发射极