这是香港特别行政区政府食品和环境卫生部食品安全中心的出版物。在任何情况下,除非从食品安全中心获得书面许可,否则在任何情况下都不应部分或全部或与其他出版物或研究工作一起复制,审查或摘要。如果使用本出版物的其他部分,则需要确认。
欢迎使用Pinoy Biotek杂志的第四期!与农业部(DA Biotech)的菲律宾农业和渔业生物技术计划合作,我们很高兴与您分享旨在帮助菲律宾农业和渔业行业的不同技术。在这个问题上,我们重点介绍了抗病性作物,这些作物将帮助农民和食品生产者产生更高的产量。其中之一是金米,它将有助于解决菲律宾的维生素A缺乏症,还可以保护稻米作物免受疾病的侵害,尤其是通龙和细菌疫病。关于耐香蕉束顶部病毒(BBTV)的香蕉品种开发的文章强调了其有助于减少产量损失的潜力。在此问题上介绍了两个循环介导的等温扩增(LAMP)技术。用于Abaca病毒检测的Lampara套件有助于农民监测其屁股作物的状况,而Juan Amplification
摘要一种新型技术,它克服了手动劳动的困难,以提高大规模食品存储设施的生产率。特别是强调米袋,这种创造性的方法旨在无缝取代人类互动,例如采摘,存储,移动和监视食物袋。该系统采用一种集成方法,其中包括精密握把,剪刀升降机,笛卡尔机器人,自动驾驶指导车辆(AGV)和先进的人工智能驱动控制系统。尤其是,称为同时定位和映射(SLAM)的技术在保证系统的平稳运行中起着至关重要的作用。虽然笛卡尔机器人精确地执行了复杂的作业,但来自AGV的自主移动性可以在存储空间内有效而准确地移动。剪刀升降机增加了系统在管理不同存储布置方面的灵活性。米饭可以仔细地处理,并且可以通过精确的抓手来控制。人工智能算法由总体控制系统采用,以促进各种成分的平稳协调。结合了这些尖端技术,该系统不仅简化了操作,而且还大大降低了对手动劳动的需求,为管理食品存储的更有效,更尖端的方法打开了大门。关键字:自主移动性,大满贯,精密抓地力,剪刀升降机,笛卡尔机器人,AGV和简化操作。在印度的研究中,水稻行业对于维持经济稳定和粮食安全至关重要。在这种情况下,有效的米袋处理至关重要,因为它直接影响分布和供应链。此摘要涵盖了用于稻袋堆叠和堆叠的自动托盘制度系统的创建和应用。利用尖端的机器人技术和自动化技术,该系统优化了处理程序,提高效率并降低了对人工劳动的依赖。印度的大多数稻米厂和存储设施目前都手工处理米袋,这是一项劳动力的运营。除了降低运营效率外,这种劳动密集型方法还
• 第 1 茬再生稻(29.5%),第 2 茬再生稻(29.1%),第 3 茬再生稻(9.8%),第 4 茬再生稻及以上(3.1%) • 播种季节:8 月中旬至 1 月初
摘要。水稻种植是国家经济环境中的重要经济活动,因为它为农村家庭提供了就业机会,并将大米作为印尼人的主要主食。但是,稻农面临小规模农业的规模问题,大约80%的稻农耕种了不到0.5公顷的公顷,平均稻田养殖收入约为IDR 546万/公顷/季节。此收入仅从谷物生产中获得,而水稻工厂的一部分有可能处理和产生收入。本研究旨在根据循环经济方法来确定机会通过创造更多的价值和加工水稻副产品来确定养殖者收入的机会。使用的方法是来自二级数据分析支持的发表科学期刊的文献综述。该研究结果表明,有机会通过利用稻草进行有机肥料,生物炭的果壳,动物饲料的许多部分来增加水稻农民的收入,以及用于功能性食品的稻米麸皮。本研究建议,要有效地实施这些经济循环活动,农民必须在农民团体组织(例如农民公司或农民拥有的企业)中工作。
基于CRISPR的摘要定向进化是一种有效的繁殖生物技术,可改善植物中的农艺特征。然而,使用单个单个指南RNA,其基因多样化仍然受到限制。我们在这里描述了多重的正交基础编辑器(MOBE),以及随机多重的SGRNA组装策略,以最大程度地提高基因多样化。bobe可以在不同的目标上诱导有效的正交安倍(<36.6%),CBE(<36.0%)和A&CBE(<37.6%),而SGRNA组装策略随机基础编辑各个目标上的基础编辑事件。与稻米乙酰辅酶A羧化酶(OSACC)的第34外显子的每个链中的130和84个靶标相应,我们观察到了随机双重双重和随机三重SGRNA库中的目标 - 折叠组合。我们使用MOBE和大米中的随机双重SGRNA文库进一步进行了OSACC的定向演变,并获得了更强的除草剂耐药性的单个或连接的突变。这些策略对于功能基因的原位定向演变很有用,并且可能会加速大米的性状改善。
摘要 CRISPR/Cas 基因组编辑在农业应用中显示出巨大的潜力,包括提高作物品质和抗病性。CRISPR/Cas9 及其变体已成功地在植物基因组中引入了靶向修饰,增强了抗病性和营养品质等特性。CRISPR 技术在茶叶育种中的应用已经显示出良好的效果,通过精准的基因改造可以培育抗病茶树并提高茶叶品质。CRISPR 革命为茶叶精准育种开辟了新途径,为提高茶叶品质和抗病性提供了一种强大而有效的方法。通过利用 CRISPR/Cas 系统的先进功能,本研究旨在开发具有改良特性的茶叶品种,解决茶叶生产中作物品质和病害管理的挑战。未来的研究应侧重于优化 CRISPR 技术并解决潜在的局限性,以充分利用这项革命性技术在茶叶育种中的优势。关键词 CRISPR 技术;精准育种;茶叶品质;抗病性;基因组编辑
摘要 本研究探讨了利用全基因组关联研究(GWAS)策略加速作物抗性性状改良的现状和未来前景。随着高通量测序技术和生物信息学的快速发展,GWAS已成为将DNA变异与重要作物性状联系起来的有力工具。本研究特别强调了整合多组学数据的策略,以及基于GWAS结果的精准育种和基因编辑技术的应用,为作物抗性性状的改良提供了新的方向和策略。此外,转录组关联研究(TWAS)等方法的出现为识别与复杂性状相关的基因提供了强有力的工具,表明未来人们对基因组调控和遗传调控基因的理解将更加全面。这些进展不仅推动了作物遗传改良的科学研究,也为作物生产和食品安全的可持续发展提供了坚实的科学基础。 关键词 全基因组关联研究(GWAS);高通量测序技术;生物信息学;作物抗性性状;转录组关联研究(TWAS)
最近发现的完整氨氧化剂(comammox硝基螺旋体)包含了进化枝A和B,该进化枝A和B建立了一个独立的一步硝化过程。但是,对于农业土壤中的环境驱动因素或栖息地分布知之甚少。先前对稻田中硝基核心的研究主要集中在小型样品上,并且缺乏对稻田中comammamox硝基螺旋体的多站点研究。在这项研究中,我们对36个稻田的调查进行了调查,旨在了解Comammox硝基核心社区结构,丰富性和多样性以及它们受环境因素的影响程度。comammox硝基螺旋藻被发现广泛分布在稻土中。comammox硝基螺旋向进化枝A的丰度大多低于进化枝B,而其多样性大多高于Bade B.相关分析表明,多个因素影响了Comammox硝基螺旋体的丰度,包括pH,土壤有机物,总碳,总氮,纬度,平均年温度和平均年降水量(P <0.05)。此外,comammox硝基螺旋藻群落和栖息地之间存在明显的关系,表明某些扩增子序列变体(ASV)在特定栖息地中具有独特的主导地位。的系统发育分析表明,comammox硝基螺旋藻的ASV是由稻田中已知序列聚集的,与其他栖息地中的已知序列有显着差异。这可能与稻田的独特栖息地有关。相比之下,comammox硝基螺旋向进化枝B没有显示出明显的栖息地依赖性。这些结果支持稻田中硝基核心的广泛分布和大量的丰富性,并提供了对农业生态系统中氮循环和营养管理的新见解。
摘要:传统的大米生产通常取决于在单一种植系统中使用密集投入的不可持续的实践。替代品休耕地覆盖种植和米鱼共培养(RFC)提供有希望的解决方案。然而,RFC中休耕覆盖作物的潜力仍未得到充实,并且对土壤微生物的影响很少。在这项研究中,对土壤 - 植物 - 微生物相互作用进行了评估:中国牛奶效率(阿斯特拉加罗斯·西尼科斯·L。)单裁剪(cm),菜籽(CM),菜籽(Brassica napus L.)单裁剪(RP),以及中国奶奶酪和菜籽的组合和中国牛奶的组合(CM cm__rp)。在添加氮(N)的情况下对这些系统进行了评估,其中包括RFC和水稻单一培养(RMC)系统。发现表明用CM的土壤微生物生物量氮(MBN)显着增加。土壤微生物生物量碳(MBC)受N-肥料的影响比农作物物种更大,随着n添加而减少。在RFC系统中,土壤细菌共发生网络表现出更多的连接,但负面的联系增加了。cm_rp显示与无n的CM相似性,但随着n的添加而移到RP。n在间隔中的添加显着增加了锡霉菌曲霉的根比(r/s),与地上生物量减少和总根长有关。与RMC相比,RFC和N添加的RFC降低了CM中厌氧酸酯的相对丰度,同时增加了覆盖裁剪系统的芽孢杆菌和pontibacter。总体而言,随着N的添加,RFC和RMC均显示出土壤细菌多样性指数降低。土壤细菌多样性的变化与土壤MBC,MBN和植物R/S显着相关。连续的休耕地覆盖农作物改变的土壤微生物生物量和影响覆盖作物生物量分布,影响稻田中的细菌成分。这些结果阐明了细菌群落如何对RFC和RMC系统中的n个添加和休闲覆盖种植的反应,从而为稻谷系统中的可持续营养管理提供了见解。