摘要:表观遗传学在慢性疼痛上的作用尚未充分表征。DNA组蛋白甲基化受到从头甲基转移酶(DNMT1-3)和十种二加氧酶(TET1-3)至关重要的调节。证据表明,与伤害感受相关的不同中枢神经系统区域,即背根神经节,脊髓和不同的大脑区域都改变了甲基化标记。在DRG,前额叶皮层和杏仁核中发现了全局甲基化的降低,这与DNMT1/3A表达降低有关。相比之下,TET1和TET3的甲基化水平和mRNA水平升高与炎性和神经性疼痛模型中的增强性疼痛性超敏反应和异常性有关。由于表观遗传机制可能负责慢性疼痛状态中描述的各种转录修饰的调节和协调,因此,通过这项研究,我们旨在评估几个大脑区域中神经性疼痛中TET1-3和DNMT1/3A基因的功能作用。在神经性疼痛的不幸的神经损伤大鼠模型中,手术后21天,我们发现内侧前额叶皮层中的TET1表达增加,并且在尾甲状腺肿和杏仁核中的表达降低。 TET2在内侧丘脑中被上调。内侧前额叶皮层和尾状甲状腺中的TET3 mRNA水平降低;在尾状药物和内侧丘脑中,DNMT1被下调。使用DNMT3A观察到表达的统计学显着变化。我们的结果表明,在神经性疼痛的背景下,这些基因在不同大脑区域中具有复杂的功能作用。DNA甲基化和羟甲基的概念是细胞类型的特定细胞类型,而不是组织特定的,以及在建立神经性疼痛模型后的时间顺序差异基因表达的可能性。
参考文献:[1] Lee, Yong Seuk 等人。“全膝关节置换术中运动校准是机械校准的一种可能替代方案。”膝关节外科、运动创伤学、关节镜 25 (2017): 3467-3479。[2] Courtney, P. Maxwell 和 Gwo-Chin Lee。“初次全膝关节置换术中运动校准的早期结果:文献荟萃分析。”关节成形术杂志 32.6 (2017): 2028-2032。[3] Blakeney, William 等人。“全膝关节置换术中的运动校准比机械校准更能再现正常步态。”膝关节外科、运动创伤学、关节镜 27 (2019): 1410-1417。 [4] Rosa, Sergio Barroso、Kaushik Hazratwala 和 Matthew PR Wilkinson。“关节炎膝关节滑车冠状面排列与目前可用的假体不匹配:对 4116 个膝关节和 45 种植入物设计的形态学分析。”《膝关节外科、运动创伤学和关节镜》31.8 (2023):3116-3123。[5] 王志伟等人。“在运动学排列的全膝关节置换术中,外侧滑车切除术的覆盖不足与胫股骨排列参数相关:一项回顾性临床研究。”《BMC 肌肉骨骼疾病》22.1 (2021):1-9。[6] Jeremić, Dragan V. 等人。 “运动学与机械校准全膝关节置换术(带内侧枢轴部件)的短期随访:病例对照研究。”《骨科与创伤学:外科与研究》106.5(2020 年):921-927。[7] Ziv, Yaron Bar 等人。“接受分期双侧膝关节置换术的患者对其运动校准膝关节的认知度低于对其机械膝关节的认知度。”《骨科杂志》23(2021 年):155-159。[8] Scott, David F. 和 Celeste G. Gray。“与植入运动校准装置的后稳定全膝关节相比,内侧稳定全膝关节的效果更好。”《关节成形术杂志》37.8(2022 年):S852-S858 [9] Scott, David F. 和 Amy A. Hellie。 “植入运动学校准的全膝关节置换术的中屈曲、前后稳定性:后稳定和内侧稳定植入物的随机定量放射学松弛度研究。” JBJS 105.1 (2023): 9-19。[10] JONES, Brett K.;CARLSON, Brian J.;SCOTT, David F. 内侧稳定与单桡骨全膝关节置换术相比,运动学校准的屈曲度更好,早期恢复更好:两年临床结果。膝关节,2023,43: 217-223 [11] Scott, G.,等人。“全膝关节置换术能否同时不受旋转限制和前后稳定?:脉冲荧光透视研究。”骨与关节研究 5.3 (2016): 80-86。 [12] Morra EA、Greenwald AS,《GMK-Sphere 全膝关节设计在站立至下蹲活动中的运动学性能模拟》,2013 年研究报告。[13] Steinbrück、Arnd 等人,《全膝关节置换术后股骨胫骨运动学和负荷模式:后稳定设计与内侧稳定设计的体外比较。”临床生物力学 33(2016 年):42-48。[14] Schütz、Pascal 等人,“GMK 球体植入物在步态活动过程中的运动学评估:动态视频荧光透视研究。”骨科研究杂志® 37.11(2019 年):2337-2347。[15] Hossain F 等人,“内侧顺应球窝胫股关节的膝关节置换术可提供更好的功能”,临床骨科研究。2011 年 1 月;469(1):55-63。[16] Banks S 等人,“内侧顺应和旋转不受约束的 TKA 设计的体内运动学”,国际技术协会第 27 届年会讲稿Arthroplasty,日本京都,2014 年 9 月 25-27 日。[17] Pritchett JW,“患者更喜欢双十字韧带保留或内侧枢轴全膝关节假体”,《关节成形术杂志》,2011 年。[18] Dowsey, Michelle M. 等人,“一项比较内侧稳定全膝关节假体与十字韧带保留和后稳定设计的随机对照试验:全膝关节置换术后临床和功能结果报告。”《关节成形术杂志》35.6(2020 年):1583-1590。[19] 存档数据:Medacta。
包括人类在内的灵长类动物中的眶额皮质是情感的关键大脑区域,在表示奖励价值和非回报的代表中,这并没有获得预期的奖励。在眶额皮质之前的皮质加工是刺激的标志性的,即“什么”存在,而不是奖励价值。有证据表明,这具有味道,视觉,体感和嗅觉刺激。人体内侧轨道额皮层代表许多不同类型的奖励,横向轨道曲面皮层代表非奖励和惩罚。没有获得预期的奖励会导致悲伤,并感到沮丧。概念是抑郁症的重要大脑区域是眶额皮质,其抑郁症与无奖励相关的侧面眶额皮质的过度反应性和过度连接有关,以及响应不足和奖励相关的内侧眶额皮质的不足性和不连续性。描述了来自大规模体素水平研究的证据,并得到了激活研究的支持,该研究为这一假设提供了支持。在抑郁症患者中发现了横向骨额皮层与包括前扣带回皮层和角回的大脑区域的侧向额叶皮层的功能连通性提高,并在用药物治疗时降低了对照的水平。在抑郁症患者中发现了内侧轨道额皮层的功能连通性与内侧颞叶区域相关。一些抑郁症的治疗方法可以通过降低外侧眶额皮质的活性或连通性来起作用。增加内侧轨道额皮层活性或连通性的新处理可能对抑郁症有用。这些概念以及非回报吸引者网络活动的活动增加具有推进我们对抑郁症的理解和治疗的潜力。,由于轨道额皮层的运行差异以及啮齿动物的奖励系统的作用差异,重点是包括人类在内的灵长类动物的轨道额叶皮质。最后,假设轨道额皮层在情感和决策中具有特殊的作用,部分原因是它作为皮层领域,它可以实施吸引人网络,可用于在线和决策中保持奖励和表达式状态。
我们提出了一个多区域大脑模型,该模型探讨了内部海马区域在空间嵌入决策任务中的作用。利用累积的任务,我们模拟了反映hippocampus Ca1区域内形成的认知图的决策过程。我们的模型集成了将网格和位置单元格结合的两分记忆支架结构,并与复发性神经网络(RNN)一起基于感觉输入和网格单元格表示,以模拟动作选择。我们证明,在模型中内侧内侧皮层(MEC)和CA1中的位置和证据信息的联合编码复制了对位置细胞行为的实验观察,并迅速学习。我们的发现表明网格单元被共同调节以定位和证据。
1 University of Reims Champagne Ardenne, Cognition, Health, Society Laboratory, EA 6291, 51100 Reims, France 2 Reims Center for Psychotherapy and Neuromodulation, 51100 Reims, France 3 University Center of Psychiatry, EPSM and CHU of Reims, 51100 Reims, France 4 McGill University, Douglas Mental Health University Institute, 11290 Montreal, Canada 5 Champollion National University Institute, Cognition Sciences, Technology & Ergonomics Laboratory, University of Toulouse, 81000 Albi, France 6 INSERM U1247 GRAP, Research Group on Alcohol and Drugs, University of Picardie Jules Verne, 80000 Amiens, France 7 Radiology Department, Reims University Hospital, 51100 Reims, France 8 University of Reims Champagne-Ardenne, CReSTIC Laboratory, 51100法国兰斯 9 兰斯大学香槟 - 阿登医学院,51100 兰斯,法国 通讯地址:Ksenija Vucurovic,Laboratoire Cognition, Santé, Société(C2S - EA 6291),UFR Lettres et Sciences Humaines,57 rue Pierre Taittinger,Reims Cedex 51096,法国。电子邮件:kvucurovic@chu-reims.fr。
创造性思维的神经机制影响模型表明,创造力体现在默认模式网络 (DMN;内侧 PFC、外侧和内侧顶叶皮层以及内侧颞叶中的一组区域) 和背外侧 PFC 内的执行网络的共同作用中。一些实证报告通过表明这些大脑系统之间的复杂相互作用可以解释创造力表现的个体差异,为该模型提供了支持。本研究旨在检验这些区域在想法生成中的参与是否受到一个人在创造力相关领域的杰出地位的调节。20 位 (n = 20) 来自不同专业领域的健康杰出创造者和一个由 16 位 (n = 16) 年龄和教育程度匹配的非杰出思想家组成的“聪明”对照组在接受功能性磁共振成像 (fMRI) 的同时,被要求执行一项创造力生成任务(替代用途任务的改编)和一项控制感知任务。参与者的口头回答通过降噪麦克风记录下来,随后进行编码,以保证流畅性和准确性。行为和 fMRI 分析揭示了各组之间的共同点,但也揭示了杰出和非杰出参与者在创造性思维过程中默认模式和执行大脑区域的激活模式不同。我们根据这些区域在创造性想法产生过程中的贡献来解释这些发现,在本研究中,这些区域受到参与者的创造性卓越性的调节。
最近的研究深入了解了个体间创造性思维的差异,重点关注分布式大规模大脑网络的特征,包括大脑区域的局部层面及其成对相互作用以及整个大脑的整体层面。然而,创造性思维与中观网络特征(如群落和枢纽组织)的关系仍不清楚。我们采用数据驱动的方法来检查来自大量参与者的静息态功能成像数据中的群落和枢纽结构,以及它们与创造性思维的个体差异之间的关系。首先,我们计算了每个参与者的大脑区域被分配到同一个群落的概率。我们发现,创造性思维能力的提高分别与内侧颞叶和皮层下区域被分配到同一个群落的增加和减少有关,这表明创造力能力可能反映在大脑网络中观组织的个体间差异中。然后,我们使用参与者特定的社区来识别网络枢纽(其连接形成跨越不同社区边界的桥梁的节点),并根据其参与系数进行量化。我们发现 DMN 和内侧颞叶区域的枢纽增加分别与创造能力呈正相关和负相关。这些发现表明,创造能力可能反映在 DMN 和内侧颞叶结构的社区互动中的个体间差异中。总的来说,这些结果证明了研究中尺度大脑网络特征与创造性思维的关系的成果。
摘要 尽管时间是生命的一个基本维度,但我们不知道大脑各个区域如何协作来跟踪和处理时间间隔。值得注意的是,对学习过程中神经活动的分析很少,主要是因为计时任务通常需要很多天的训练。我们研究了当动物学习计时 1.5 秒间隔时,时间编码是如何演变的。我们设计了一种新颖的训练方案,让大鼠在一次训练中从幼稚到熟练的计时表现,这让我们能够研究非常早期学习阶段的神经元活动。我们使用药理学实验和机器学习算法来评估内侧前额叶皮层和背侧纹状体的时间编码水平。我们的结果显示,在时间学习过程中,内侧前额叶皮层和背侧纹状体之间存在双重分离,前者致力于早期学习阶段,而后者在动物熟练掌握任务时参与其中。
癫痫检测、咨询和治疗 • 首次癫痫发作后的护理和教育 • 无法控制的癫痫发作 • 耐药性癫痫 • 颞叶内侧硬化和皮质发育不良 • 创伤后癫痫 • 与脑肿瘤或脑外科手术相关的癫痫 • 抗癫痫药物治疗(目前