几种昆虫与真菌具有亲生性关系。昆虫吃了真菌,但是在大多数真菌昆虫中,这种关联与昆虫不同,因为昆虫会操纵真菌,因此间接地衍生了营养与原本难以或无法利用的底物。Ambrosia甲虫(一些Scolytinae和几乎所有铂科)与真菌有关,使它们能够使用木质植物的木质部。真菌是幼虫和成人的主要食物,其关键作用可能在浓缩氮中,木材中的浓度很低。他们还提供固醇,例如麦角固醇,这对于甲虫的发育至关重要。树皮甲虫(大多数scolytinae)主要以木质组织的韧皮部为食,木质组织的营养素高于木质部。他们也有真菌关联,但它们的依赖性不太极端。甲虫 - fungus关联不是物种特异性的。几个真菌属与Ambrosia甲虫有关。最著名的两个是镰刀菌和Ambrosiella。大多数与树皮甲虫相关的人都在ceratocystis属中。切叶蚂蚁(Attini)取决于特定的幼虫食品真菌。工人蚂蚁从活植物中切下叶子和其他部位,并将其带到巢穴。在这里,蚂蚁咀嚼植物碎片,去除蜡质角质层,并可能清除植物表面上现有的微生物。使用粪便,他们将咀嚼的碎片建立到一个花园中,并从现有花园接种菌丝。真菌是仅发生在这些蚂蚁巢中的基本菌。宏观甲虫还在花园中种植真菌,称为真菌梳,由含有木材碎片的新鲜粪便材料制成。真菌在白蚁属中仅与白蚁有关。它会分解纤维素和木质素,并且在白蚁摄入时,它将其纤维素分解酶贡献给昆虫的酶。氮也被浓缩。在真菌的生殖结构中,白蚁食用,达到8%的干重;最初摄入的木材可能只有约0.3%的干重。termitidae,包括大近三甲虫,没有内共生原生动物。
微生物真核生物(又称生物学家)以其在不同生态系统中的营养循环中的重要作用而闻名。然而,原始人相关的微生物组的组成和功能在很大程度上仍然难以捉摸。在这里,我们采用了与培养无关的单细胞分离和基因组分辨的宏基因组学,以详细的见解对目前从不同环境中分离出的目前无法培养的纤毛和Amoebae的100多个未倍增的微生物组和病毒膜。我们的发现揭示了独特的微生物组组成,并暗示了复杂相互作用以及与细菌共生体和病毒关联的复杂网络。我们观察到纤毛和变形虫在微生物组和病毒蛋白组成方面存在明显的差异,突出了原生物 - 微生物相互作用的特异性。超过115个回收的微生物基因组与已知的真核生物的内共生体相关,其中包括多元化的众多成员,人力体,军团菌,衣原体,依赖性和250个以上的人与可能的宿主相关细菌属于phylylyscibac的细菌。我们还确定了属于多种病毒谱系的80多个巨型病毒,其中一些病毒在单细胞转录组中积极表达基因,这表明可能与采样的生物有关联。我们还揭示了广泛的其他病毒,这些病毒被预测会感染真核生物或宿主相关的细菌。我们的结果提供了进一步的证据,表明生物是复杂的微生物和病毒关联的介体,在生态网络中起着至关重要的作用。我们的样品中巨型病毒和多种微生物共生体的频繁同时出现表明多部分关联,尤其是在变形虫中。我们的研究提供了与鲜为人知的原生物谱系相关的微生物多样性的初步评估,并为对原生生态学及其在环境和人类健康中的作用有了更深入的理解铺平了道路。
微藻是一组系统发育多样的微生物,其中大多数可以进行光合作用。微藻主要是水生单细胞真核生物,但是由于相似的生理学和生物技术应用,光合单细胞原核生物的蓝细菌通常被归类为丙酸酯微藻。实际上,蓝细菌首先获得了通过进化而获得光合作用的能力,然后将这种能力转移到真核微藻中,通过内共生症,因此,丙酸和coary虫的微藻是系统质的(Thoré等人,20233)。微藻在地球及其生物圈的进化中起重要作用。蓝细菌是氧气产生的先驱,以及二氧化碳转化为生物量,使地球上的异养和有氧生物可能成为可能,直到今天,微藻可能是地球上地球化学周期中最重要的生物学特征。它们是水生生态系统中最重要的主要生产者,并为所有水生动物提供食物。微藻是一种系统发育非常多样化的生物群体,可能包含70,000多种物种,实际上只有很小的一小部分被分离出来,鉴定并报告,使它们在地球上被剥削最少的生物资源之一(Grama等,20222)。探索生物技术应用微藻可以为我们所有人所面临的全球问题提供未来的解决方案,例如环境可持续性,粮食安全,能源供应,医疗保健等。因此,由于其生物多样性,代谢多功能性和微观性质,生物概况微量的战略解决方案可能值得我们全球挑战。尽管有很大的潜力,但到目前为止,只有几种微藻物种是在用于利基市场(例如健康食品或水产养殖饲料应用程序)的工业利用的。与传统农业或工业发酵部门相比,社会和经济上有吸引力的微藻过程发展的主要限制因素是生物量生产的低表面生产率和高成本。使用可用于微藻的现代基因工程工具应对这一挑战将是高度建设性的。一种观点是要设计微藻的轻度收获系统,以获得更多有效的光利用率(Hu等,2023)。用于微藻的工业自养培养,光仍然是
少数寄生虫Mansonella Ozzardi和Mansonella Perstans,Mansonellelisois的病因,感染了全球数亿人,但仍然是人类官方病原体中最受研究所研究的人之一。M. Ozzardi在拉丁美洲国家和加勒比海群岛高度普遍,而M. Perstans主要在撒哈拉以南非洲以及南美的一些地区发现。除了其地理分布的差异外,这两个寄生虫还通过不同的昆虫载体传播,并且在其对常用的驱虫药物的反应上表现出差异。缺乏基因组信息阻碍了对Mansonella寄生虫的生物学和进化的研究,并了解物种之间临床差异的分子基础。在当前的研究中,报道了喀麦隆的两个独立临床分离株的高质量基因组和两个来自巴西的ozzardi分离株,另一个是委内瑞拉的。基因组的大小约为76 MB,每个基因编码约10,000个基因,并且基于BUSCO评分约为90%,与其他完整的基因组相似。这些序列代表了Mansonella寄生虫的第一个基因组,并实现了对Mansonella和其他细胞寄生虫之间相似性和差异的比较基因组分析。水平DNA转移(HDT)从线粒体(NUMTS)以及从内共生菌群沃尔巴氏菌(NUWT)转移到宿主核基因组的转移并进行了分析。序列比较抗合性药物的已知靶标二乙基钙化靶标(DEC),伊维沙素和梅本唑的序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。 这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。序列发育分析表明,除GON-2基因编码的DEC靶标外,所有已知的靶基因均存在于GON-2基因中,而GON-2基因编码了GON-2基因,该基因在基因组中均来自M. ozzardi Inlecties。这些新的参考基因组序列将为生物学,共生,进化和药物发现的进一步研究提供宝贵的资源。
“微藻”一词是指具有光合作用的单细胞细胞,包括来自两个生命领域的生物,即细菌(蓝藻)和来自初级(古藻体)或次级(例如,原生藻)内共生事件的各种真核生物演化支。尽管微藻在分类学上分布广泛,但它们具有一些共同的特征,使它们在某种程度上“相似”。产氧光合作用源自共同的起源,这使得微藻在营养网络中作为初级生产者占有重要地位。它们是单细胞的或形成非常小的菌落,其培养依赖于常见的方法,提供光、二氧化碳、水和营养物质。微藻可产生有价值的分子,如聚糖、脂质、色素、蛋白质等。因此,尽管“微藻”一词在植物学或分类学意义上并不恰当,但它在生态学和人类工业中有着其合法的含义。这既是将知识从一种生物体转移到另一种生物体时的弱点,也是解决类似生物技术问题时的优势。过去十年,发展以微藻为基础的产业已成为一项社会挑战。气候紧急情况和耕地压力使得每天对新型无碳和可持续生产的需求更加迫切。应用范围从食品、健康、绿色化学到生物燃料,有望利用从大气或碳排放行业捕获的二氧化碳生产生物分子。在这种背景下,“藻类行业”应运而生,聚集了专门从事藻类培养、收获、提取工艺和生物精炼的参与者。将野生藻类菌株转化为“藻类作物”,即“驯化”微藻,代表着一项艰巨的任务,因为可能存在感兴趣的初始特征,如相对较高的油、碳水化合物、色素等,但提高、可重复和可扩展产量的道路极具挑战性。农业领域可以吸取一些经验教训,为微藻领域的研究提供新的刺激。当人们在大自然中行走时,他或她会发现类似小麦、玉米、番茄、向日葵、油菜籽等的野生植物吗?与野生植物相比,农作物看起来又大又胖。此外,收获后,栽培种子很少逃逸并入侵未开垦地区。因此,植物驯化侧重于生产力和质量,而不是与野生群落竞争的适应性。野生植物和驯化植物之间的巨大差异表明,其他生命分支也应该可以获得产量的提高,请记住,栽培植物是二倍体,而目前大多数栽培的微藻是单倍体。