被认为最有可能在与暴露人员发生相互作用时起作用的未爆炸弹药(例如子弹药、40 毫米高爆 [HE] 手榴弹、白磷 [WP] 弹药、高爆反坦克 [HEAT] 弹药和带有敏感引信的练习弹药,但不包括所有其他练习弹药)。含有高能填充物的手榴弹。散装初级炸药,或这些与环境介质的混合物,混合物具有爆炸危险。
旋转爆震火箭发动机 (RDRE) 在航空航天和国防应用中备受关注,因为它们依赖于爆震,而不是爆燃。在爆震或增压燃烧中,火焰是超音速的,热量通过增压和释放循环释放,该循环的温度和压力都随时间变化。由于燃烧的局部化及其在一系列入口条件下的相对稳健性,热流道可以变得非常紧凑,这是经常被忽视的系统优势。这种压缩流道成为 SWAP 的优势,可以通过多种方式加以利用,例如增加燃料空间以增强系统范围。本提案涉及创新设计解决方案的设计、分析和制造演示,使爆震发动机能够使用非腐蚀耐火材料,这被认为是开发可重复使用的高热通量旋转爆震火箭发动机的一步。与目前的铜基材料相比,该技术将提供更高的最高使用温度和更好的热化学抗性。这一先进概念将在第一阶段工作计划中通过完成以下任务进行演示:定义设计要求;选择材料和开发属性数据库;设计和分析;制造简单的演示硬件;以及报告和交付。这项拟议工作的重要性在于提供更强大的 RDRE 组件,从而延长使用寿命、减少测试停机时间并提高测试条件。此外,相对于目前最先进的技术,这项工作中确定的概念将提供一种无腐蚀热壁材料解决方案,不需要任何主动冷却;从而消除了使用辅助泵、歧管和管道提供冷却液所带来的复杂性和额外的重量损失。
首次实现了聚变“科学盈亏平衡”(即,目标增益 G 目标为 1,总聚变能量输出 > 激光能量输入)(此处,G 目标 ∼ 1.5)。本文报告了设计变更的物理原理,这些变更导致在国家点火装置上使用激光间接驱动进行首次受控聚变实验,以产生大于 1 的目标增益,并超过了之前根据劳森标准获得的点火所需的条件。成功的关键因素在于减少“滑行时间”(激光脉冲结束和内爆峰值压缩之间的持续时间)和最大化传递到“热点”(聚变燃料的产量产生部分)的内部能量。解释了滑行时间与动能向内能的最大效率转化之间的联系。不对称和流体动力学诱导混合的能量学后果是高产量大半径内爆设计实验和设计策略的一部分。本文展示了不对称和混合如何合并为一个关键关系。结果表明,混合会产生与内爆不对称影响类似的动能成本,从而将点火阈值转移到更高的内爆动能——这一因素通常不包含在广义劳森标准的大多数陈述中,但关键的必要修改显然已经显现出来。
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些高频纵向机械振动被探头(喇叭)放大,并以交替的膨胀和压缩声压波的形式传输到液体中。压力波动导致液体分子内聚力分解,将液体拉开并产生数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段剧烈内爆。随着气泡破裂,内爆点会产生数百万个微观冲击波、微喷射流、涡流和极端压力和温度,并传播到周围介质。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但内爆空腔产生的累积能量极高,是超声波槽中产生能量的许多倍。
超声波电源(发电机)将 50/60 Hz 电压转换为高频电能。此交流电压施加到转换器内的圆盘状陶瓷压电晶体上,使它们随着极性的每次变化而膨胀和收缩。这些纵向振动被探头(喇叭)放大,并以交替的高压和低压超声波形式传输到液体中。压力波动将液体分子拉开,形成数百万个微气泡(空腔),这些气泡在低压阶段膨胀,在高压阶段猛烈内爆。随着气泡破裂,内爆点会产生数百万个冲击波、微流、涡流以及极端压力和温度。尽管这种称为空化的现象仅持续几微秒,并且每个气泡释放的能量很小,但产生的能量累积量却非常高。该过程是自我刺激的,因为内爆的气泡会为气泡的形成创造新的位置。传递的高剪切能量在探针尖端附近最大,并且随着距离尖端的距离增加而减小。
激光直接驱动 (LDD) 是惯性聚变能 (IFE) 设计最合适的方案之一,因为它可以比间接驱动 [1] 至少多两倍的激光能量耦合到内爆壳层。一旦通过宽带激光技术或激光波长失谐缓解横光束能量转移 (CBET),LDD 中激光与目标的耦合可以进一步增强约 2 倍。LDD 依赖于低 Z 烧蚀材料/等离子体(如聚苯乙烯、铍、碳等)对激光能量的吸收。日冕等离子体中吸收的激光能量主要通过电子热传导传输到烧蚀前沿。该过程的效率被称为内爆的“水效率”,即激光吸收和火箭效率的乘积。内爆舱的动能越大,点火裕度越大,IFE 目标的增益越高。三件事对于通过 LDD 方案实现 IFE 的成功至关重要:(1)。使大部分激光能量被日冕中的烧蚀等离子体吸收;(2)获得最佳的水效率,将尽可能多的激光能量与内爆胶囊的动能耦合,从而提供高烧蚀压力以加速壳体;(3)提高烧蚀速度以稳定瑞利-泰勒不稳定性增长,从而提高胶囊的完整性。有几种研究方向可以实现上述目标。宽带激光等先进激光技术可以解决吸收增加和印记减少等问题 [2]。一种补充途径是目标解决方案,即通过设计和制造先进的烧蚀材料来提供上述成功实现高增益 IFE 目标设计的关键因素。目标解决方案可以解决印记减少和 RT 等问题
即使这是第一次发生这种事情,也不需要太多的脑力劳动来预示(强调“预”)它可能发生。这就是工程师、测试社区和教员发挥作用的地方。平台必须支持任务。程序必须解决所有可能的问题。教员必须从头到尾为新手做好准备。轮胎会爆胎吗?会爆胎。海军飞行员学生在第一次射击猫时会屈服于皱眉因素并踩到活页夹吗?会爆胎!即使是老水手也无法避免偶尔的失误。在我与飞行器打交道的漫长岁月中,我认识了许多获得呼号“Boom Boom”的棕鞋人。我记得我第一次被抛出尖端的情景(那时尖端更尖)。哇哦,我像高峰时间的负鼠一样睁大了眼睛。只有造物主的恩典和塞在我飞行靴里的曾祖母佩蒂伯恩的一块鹿肉干(当然是为了好运)才让我安然无恙地度过了那场荒野。当然,这个学生不应该在这里做他所做的事情,但爷爷在老飞机上为雏鸟们留了一个特殊的位置,没有什么比看到系统像这样把他们中的一个挂起来更让我难受的了。我们必须为我们的年轻人做得更好。
零长度发射 — (*) 导弹或飞机的第一次运动就将其从发射器移开的一种技术。 零点 — 核武器爆炸瞬间爆炸中心的位置。零点可能在空中,也可能在陆地或水面之上或之下,具体取决于爆炸类型,因此应将其与爆心区分开来。 区域 I(核) — 以最小安全距离 I 为半径,以期望的爆心为中心确定的圆形区域,所有武装部队均从该区域撤离。如果无法撤离或指挥官选择更高风险程度,则需要采取最大程度的保护措施。 区域 II(核) — 以最小安全距离 II 为半径,以期望的爆心为中心确定的圆形区域(区域 I 较小),所有人员都需要最大程度的保护。最大程度的保护表示武装部队人员身处“扣紧”的坦克中或蹲在带有临时头顶防护装置的散兵坑中。 III 区(核)—— 以最小安全距离 III 为半径,以期望的爆心点为中心确定的一个圆形区域(减去 I 区和 II 区),该区域内的所有人员都需要最低限度的保护。最低限度保护表示武装部队人员卧倒在开阔地上,所有皮肤区域均被覆盖,整体热防护至少与两层制服相当。 行动区—— (*) 对较大区域的战术细分,由战术单位负责;一般用于进攻行动。另见扇区。 射击区—— 指定地面单位或火力支援舰艇提供或准备提供火力支援的区域。可能会或可能不会观察到火力。也称为 ZF。(JP 3-09) ZULU 时间——参见世界时。