7.1 新西兰南岛怀塔基山谷地貌要素的照片和形态图 96 7.2 九单元地表模型 97 7.3 1974 年新西兰惠灵顿发生的山体滑坡 101 7.4 新西兰怀帕奥阿河悬浮泥沙浓度与水排放量之间的关系。 B:长期累积悬浮沉积物产量与洪水频率之间的关系 103 8.1 密歇根州欧克莱尔生长度日数中值变化的预测 128 8.2 夏威夷马努阿罗阿天文台空气样本中二氧化碳 (CO 2 ) 浓度月平均值趋势 129 8.3 北半球温度曲线 129 8.4 北半球年平均温度估计值与平均温度的异常值 130 9.1 森林、林地、灌木、草本草原和沙漠群落的概况 138 9.2 不同类型的花粉粒显示出孔隙和开口的典型形状和排列 140 9.3 具有早材和晚材年轮的树木横截面 140 9.4 可用于从湖泊和泥炭中获取样本的沉积物取芯装置(俄罗斯取芯器) 142 9.5 树芯取样器和树轮芯 143 9.6 安大略省 Decoy 湖的花粉图(根据 Szeicz 和 MacDonald,1991 年) 144 9.7 线样带、带样带和样方或地块的示例 148 9.8 1997 年冬季在 S 收集的大球果花旗松(Pseudotsuga menziesii)的树轮芯
摘要。基于改良的Candle-B(Mcandle-B)燃烧策略的气冷冷却快速反应堆(GFR)核心类型与薄煎饼的概念设计的比较研究。mcandle-b是一种燃烧策略,它利用天然铀或耗尽的燃料作为其输入周期。比较的反应堆芯的概念设计是高缸和煎饼缸。在这种情况下,使用的燃料为U-10%ZR,SS-316作为覆层材料和氦作为冷却剂。两个反应器核的总体积相同,即15.4 m 3。带有PIJ的SRAC 2K6软件,并使用引用模块进行模拟。PIJ模块用于燃料电池计算,引文模块用于反应堆核心计算。比较结果表明,煎饼芯使反应堆芯可以分别用于50%:10%:40%的燃料,分别用于燃料,覆层和冷却液。获得的设计可以在不加油的情况下运行10年。
也称为 3 Fast® 系统 Check-Fast® 系统旨在提高施工现场的安全性。圆形吊索产品上的 3 Fast® 标签和外部警告指示器 (EWI) 可对内部承重芯纱进行通过/未通过检查。可以检测到因紫外线 (UV) 光降解、纤维对纤维磨损、疲劳和严重过载而对芯纱造成的损坏。如果吊索错误地超过额定容量,EWI 会在吊索失效之前消失。吊索检查员现在有了一个 GO/NO-GO 检查设备,而不必依靠主观的手动检查来对承重芯纱是否状况良好做出有根据的猜测。该安全系统适用于由授权的 Slingmax® 经销商制造的高性能 K-Spec® 纤维圆形吊索或聚酯圆形吊索。
在一般监督下,使用手动工具和特殊设备修理和打开锁、制作钥匙和更改锁组合。拆卸锁,例如挂锁、保险箱锁和门锁。拆卸锁,例如挂锁、保险箱锁和门锁。修理或更换磨损的锁芯、弹簧和其他部件。将新的或修理过的锁芯插入锁中以更改组合。使用钥匙切割机切割新钥匙或复制钥匙。将撬锁器移入锁芯以打开没有钥匙的门锁。钻开或切开保险箱。培训和指导他人进行各种活动,包括检查他们的工作以确保遵守公司和空军规定。当不承担锁匠职责时,将履行首席木匠的职责,包括领导和指挥下级人员。还将根据需要执行熟练工职责
顺式调节元件(CRE)与反式调节剂相互作用以编排基因表达,但是在多基因基因座中如何协调转录调控尚未实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICO的动态表达的CRE,并编码了T细胞介导的免疫的调节剂。平铺CRISPR干扰(CRISPRI)筛选在常规和调节子集的原代人T细胞中,发现的基因,细胞子集和刺激特异性CRE。与CRISPR敲除筛选和针对转座酶可访问的染色质的测定(ATAC-SEQ)分析确定了在特定的CRISPRI-RESPONSIME元素上影响染色质状态的反式调节剂,以控制共刺激基因表达。然后,我们发现了一个关键的CCCTC结合因子(CTCF)边界,该边界增强了与CTLA4的相互作用,同时还可以防止CD28的混杂激活。通过系统地绘制CRE和相关的反式调节剂直接在原代人T细胞子集中,这项工作克服了长期存在的实验局限性,以解码与免疫稳态至关重要的复杂的多基因基因座中的上下文相关基因调节程序。
量子技术的发展和广泛应用高度依赖于分配纠缠的通信信道的容量。空分复用 (SDM) 增强了传统电信中的数据信道传输容量,并有可能利用现有基础设施将这一理念转移到量子通信中。在这里,我们展示了在 411 米长的 19 芯多芯光纤上进行偏振纠缠光子的 SDM,该光纤可同时通过多达 12 个信道分配偏振纠缠光子对。多路复用传输的质量由高偏振可见性和每对相反纤芯的 Clauser-Horne-Shimony-Holt (CHSH) Bell 不等式违反证明。我们的分配方案在 24 小时内表现出高稳定性,无需任何主动偏振稳定,并且可以毫不费力地适应更多信道。该技术增加了量子信道容量,并允许基于单个纠缠光子对源可靠地实现多用户量子网络。
摘要。精确的高精度磁场测量对许多应用来说都是一项重大挑战,包括研究空间等离子体的星座任务。仪器稳定性和正交性对于在不进行大量交叉校准的情况下对星座中不同卫星进行有意义的比较至关重要。这里我们描述了 Tesseract 的设计和特性 - 一种专为低噪声、高稳定性星座应用而设计的磁通门磁强计传感器。Tesseract 的设计利用了定制低噪声磁通门芯制造方面的最新发展。六个定制的赛道磁通门芯牢固而紧凑地安装在一个坚固的三轴对称基座内。 Tesseract 的反馈绕组配置为四方 Merritt 线圈,以在传感器内部创建一个大的均匀磁零点,其中磁通门磁芯保持在接近零的磁场中,而不管环境磁场如何,以提高磁芯磁化循环的可靠性。 Biot-Savart 模拟用于优化反馈 Merritt 线圈产生的磁场的均匀性,并通过实验验证其沿赛道磁芯轴线的均匀性在 0.42 % 以内。使用线圈系统内装满干冰的绝缘容器来测量传感器反馈绕组的热稳定性。发现反馈绕组的温度灵敏度在 13 到 17 ppm ◦ C − 1 之间。传感器的三个轴在 −45 至 20 ◦C 的温度范围内保持正交性,误差不超过 0.015 ◦。Tesseract 的核心在 1 Hz 时实现了 5 pT √ Hz −1 的磁本底噪声。Tesseract 将在 ACES-II 探空火箭上进行飞行演示,目前计划于 2022 年底发射,并将再次搭载在 TRACERS 卫星任务上,作为 MAGIC 技术演示的一部分,目前计划于 2023 年发射。
8. 本数据手册所含数据仅供专业技术人员使用。客户自己的技术部门有责任评估产品是否适合预期用途以及本文档中给出的产品信息是否完整。如果您对本数据手册的任何部分有任何疑问,请在使用产品前联系勤芯微电子科技有限公司。勤芯微电子科技有限公司对因未按照此处所述说明使用产品而造成的任何损害概不负责。