摘要 随着晶体管越来越小、越来越密集,电子的物理流动可能会因电迁移 (EM) 在互连处形成空隙和裂缝,从而随着时间的推移抑制器件的性能。不符合 EM 规范的电路设计可能会导致灾难性故障和 SI/PI 性能下降。缓解 EM 的一种方法是在铜线层之间使用多个通孔来减少电流拥挤效应。然而,通孔的数量可能会影响关键接头内的电流密度和电流再分布。当前的研究主要集中在基于经验 Black 方程预测 EM 故障时间 (TTF)。然而,这种方法可能无法提供足够的关于空隙形成和裂纹扩展的见解,并反映可能影响 TTF 的电流再分布。在本研究中,我们比较了具有不同结构设计的球栅阵列 (BGA) 测试载体的 EM 寿命,并开发了一种基于多物理场迁移考虑焊点中原子扩散的方法,以研究通孔对电流再分布的影响。此外,还模拟了裂纹扩展以了解失效机制。在 150C 下对无通孔和有 8 个通孔的 BGA 走线施加 5A、7A 和 9A 电流以比较电磁性能。此外,每个测试结构都采用两种不同的表面处理:A 和 B。根据实验结果,执行基于原子通量发散 (AFD) 的有限元分析 (FEA) 模拟以与实验结果进行比较。发现与菊花链走线相比,8 个通孔可以显著降低电流拥挤效应。研究表明,8 个和 4 个通孔的电磁阻力优于无通孔走线,并有助于预测不同结构的电磁寿命,为设计优化提供指导。 关键词 电迁移、可靠性、多物理场、有限元分析、电路优化
用于高频应用的具有光敏性的低 Df 聚酰亚胺 Hitoshi Araki *、Yohei Kiuchi、Akira Shimada、Hisashi Ogasawara、Masaya Jukei 和 Masao Tomikawa 东丽工业公司电子与成像材料研究实验室,3-1-2 Sonoyama,大津,滋贺 520-0842,日本 *hitoshi.araki.u8@mail.toray 我们研究了聚酰亚胺链的分子运动和极性,开发出了新型低介电常数 (Dk) 和耗散因数 (Df) 聚酰亚胺。我们发现 10-100 GHz 时的 Df 对应于 -150 至 -50 ℃ 时的分子迁移率。为了降低高频时的介电损耗 (=Df),限制低温下的分子运动非常重要。此外,减少聚酰亚胺链中的极性和柔性单元对于获得低 Dk 和 Df 的聚酰亚胺也很重要。我们利用这些知识开发了用于 RDL 的低介电损耗聚酰亚胺。结果,我们获得了新型聚酰亚胺的损耗角正切为 0.002 和介电常数为 2.7。这些聚酰亚胺可以通过正性光刻胶显影的碱性湿法蚀刻和紫外激光烧蚀法进行图案化。我们还通过混合光活性剂开发了光可定义的低损耗角正切聚酰亚胺。与传统的感光聚酰亚胺相比,新型低 Df 聚酰亚胺的微带线插入损耗更低。这些低介电损耗聚酰亚胺适用于 FO-WLP 绝缘体、中介层和其他微电子射频应用。 关键词:聚酰亚胺,低 Dk 和 Df,高频,图案化,低插入损耗 1. 简介 近年来,使用更高频率的 5G 通信技术正在不断推进,以实现高速大容量通信 [1]。此外,用于汽车防撞系统的毫米波雷达将使用超过 60 GHz 的频率 [2]。扇出型晶圆级封装 (FO- WLP) 因其封装尺寸小、制造成本低而备受半导体封装关注。高频 FO-WLP 中的再分布层 (RDL) 需要具有低介电常数 (Dk) 和耗散因数 (Df) 的绝缘体材料 [3]。特别是,采用扇出技术的封装天线 (AiP) 是 5G 时代的关键技术之一。聚四氟乙烯和液晶聚合物被称为低介电常数、低介电损耗材料。然而,这些材料在粘附性和精细图案的图案化性方面存在困难。用于 FO-WLP 再分布层的光电 BCB 介电常数低
摘要 本研究介绍了 6 面模塑面板级芯片级封装 (PLCSP) 的设计、材料、工艺、组装和可靠性。重点介绍了在带有多个器件晶圆的大型临时面板上制造 PLCSP 的 RDL(重新分布层)。由于所有印刷电路板 (PCB) 面板都是矩形,因此一些器件晶圆被切成两块或更多块,以便充分利用面板。因此,产量非常高。由于所有工艺/设备都是 PCB 工艺/设备(不是半导体工艺/设备),因此这是一个非常低成本的工艺。制造 RDL 后,将晶圆从 PCB 面板上剥离。然后进行焊球安装,并从带有 RDL 的原始器件晶圆制造 6 面模塑 PLCSP。介绍了 PLCSP 的跌落测试和结果(包括故障分析)。 6 面模塑 PLCSP PCB 组件的热循环由非线性温度和时间相关有限元模拟执行。关键词 扇入封装、再分布层、6 面模塑面板级芯片级封装、切割晶圆和跌落测试。
除了使用有机基板封装外,为了克服尺寸限制,人们还提出了新的封装技术并将其应用于半导体产品。晶圆级封装 (WLP) 和扇出型晶圆级封装 (FOWLP) 的开发是为了通过采用晶圆工艺而不是基于层压的工艺来进一步缩小封装尺寸。对于亚微米互连,还提出了通过 Si 中介层 (TSI) 进行互连,并用于高密度 2.5D/3D 封装,其中 Cu BEOL 互连可用作再分布层 (RDL)。热压键合 (TCB) 目前用于 2.5D/3D 组装,然而,混合键合将是进一步缩小芯片连接尺寸的关键推动因素,这将在后面讨论。英飞凌于 2006 年提出了一种称为嵌入式晶圆级球栅阵列 (eWLB) 的 FOWLP [1],该技术于 2009 年转让给 STATS ChipPAC 进行批量生产。台积电开发了另一种类型的 FOWLP,称为
摘要:天然氨基醇是针对神经退行性疾病的有前途的药物,例如阿尔茨海默氏症和帕金森氏病,以及一种相关的保护机制,是通过与生物膜结合和置换型或结合抑制淀粉样蛋白蛋白及其细胞毒素氧化氧化氧化氧化氧化氧化物的结合而发生的。我们比较了三种化学上不同的氨基酚,发现它们表现出不同的(i)结合亲和力,(ii)电荷中和(iii)机械增强剂,以及(iv)重新溶解的脂质体膜内的关键脂质再分布。它们在保护培养的细胞膜侵害淀粉样蛋白β低聚物中也具有不同的效力(EC 50)。全球拟合分析导致了一个分析方程,该方程式描述了氨基氨醇的保护作用,其浓度和相关膜作用的函数。分析将氨基氨基蛋白介导的保护与明确定义的化学部分相关联,包括诱导部分膜中和效应的多胺组(79±7%)和类似胆碱的尾巴,从而导致脂质重新分布和双层机械抗性(21±7%)(21±7%),并将其量化效果链接到它们的化学效果。■简介
第四章 用铯-137数据估算侵蚀速率 4.1 介绍 4.1.1 经验关系的使用 4.1.2 理论模型和核算程序 4.2 铯-137沉积和再分布的模拟 4.2.1 耕地剖面模型概述 4.3 铯-137的沉降输入 4.3.1 “旧”和“新”铯-137的区分 4.4 沟内和沟间侵蚀 4.4.1 侵蚀过程的粒度选择性 4.5 “旧”铯-137的损失 4.6 “新”铯-137的损失 4.6.1 铯-137的初始深度分布 4.6.2 “新”铯-137的损失沟间侵蚀造成的新铯-137 损失 4.7 侵蚀剖面铯-137 含量的变化 4.8 侵蚀土壤中铯-137 的含量 4.9 加积剖面的模拟 4.9.1 加积剖面铯-137 含量的变化 4.10 耕作混合的模拟 4.1 0.1 侵蚀剖面 4.10.2 加积剖面 4.11 耕作位移的影响 4.1 1.1 模拟沟间侵蚀的影响 4.11.2 模拟耕作加积的影响 4.12 校准曲线的制定 4.13 灵敏度分析 4.14 概述 4.15 参考文献 4.16软件清单 4.16.1 配置文件模型:FORTRAN-77 程序 4.16.2 数据文件示例:Wile' 4.16.3 大气沉降物数据文件:'mod.dat'
此外,增加的交感神经输出会导致斑点动脉和静脉收缩,从而导致从斜体电容脉管系统到循环体积的血液再分布。在已经存在体积扩展的状态下,这增加了通过重新分布来增加有效的循环体积。1 3结果,静脉回流和心脏填充压力增加。11的确,在长期存在的静脉充血状态和/或急性心力衰竭的交感神经激活状态下,静脉电容功能被损害。11,1 4,1 5重要的是,术语卷过载和拥塞通常可以互换使用。但是,已经证明,入院前一个月因急性心力衰竭增益≤1kg住院的患者中有54%表明,体积超负荷不完全表征了急性心力衰竭的病理生理学和体积重新分布的病理生理学,也可能有助于征兆和症状的会征兆和症状。1 6,1 7此外,心力衰竭通常与恶病质有关,这使得对体重变化的解释变得困难。此外,恶病质可能导致血浆蛋白的损失,降低血浆肿瘤压力,从而妨碍从间质中的血浆重新填充血浆。1 8,1 9此外,医院期间的体重减轻不一定与改善院内或入院后发病率或死亡率有关,但是体重增加与不良结果有关。7作为位数主要用于缓解过多的体积,本手稿的其余部分将重点放在交通拥堵的情况下,并过多量。20,2 1因此,欧洲心脏病学学会(ESC)诊断和治疗急性和慢性心力衰竭的指南建议将急性液体再分配与出现拥塞的患者的真实体积过载区分开(无课程建议)。
此外,增加的交感神经输出会导致斑点动脉和静脉收缩,从而导致从斜体电容脉管系统到循环体积的血液再分布。在已经存在体积扩展的状态下,这增加了通过重新分布来增加有效的循环体积。1 3结果,静脉回流和心脏填充压力增加。11的确,在长期存在的静脉充血状态和/或急性心力衰竭的交感神经激活状态下,静脉电容功能被损害。11,1 4,1 5重要的是,术语卷过载和拥塞通常可以互换使用。但是,已经证明,入院前一个月因急性心力衰竭增益≤1kg住院的患者中有54%表明,体积超负荷不完全表征了急性心力衰竭的病理生理学和体积重新分布的病理生理学,也可能有助于征兆和症状的会征兆和症状。1 6,1 7此外,心力衰竭通常与恶病质有关,这使得对体重变化的解释变得困难。此外,恶病质可能导致血浆蛋白的损失,降低血浆肿瘤压力,从而妨碍从间质中的血浆重新填充血浆。1 8,1 9此外,医院期间的体重减轻不一定与改善院内或入院后发病率或死亡率有关,但是体重增加与不良结果有关。7作为位数主要用于缓解过多的体积,本手稿的其余部分将重点放在交通拥堵的情况下,并过多量。20,2 1因此,欧洲心脏病学学会(ESC)诊断和治疗急性和慢性心力衰竭的指南建议将急性液体再分配与出现拥塞的患者的真实体积过载区分开(无课程建议)。
随着芯片尺寸的缩小,晶圆级封装 (WLP) 正成为一种有吸引力的封装技术,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出晶圆级封装 (FOWLP) 设计的进步,这种先进技术已被证明是一种比扇入 WLP 更理想、更有前景的解决方案,因为它具有更大的设计灵活性,具有更多的输入/输出 (I/O) 和更好的热性能。此外,与倒装芯片封装相比,FOWLP 具有更短、更简单的互连,具有卓越的高频性能。eWLB(嵌入式晶圆级 BGA)是一种 FOWLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用。它还可能发展成各种配置,并基于超过 8 年的大批量生产,具有经过验证的产量和制造经验。本文讨论了 eWLB 在汽车应用中的强大板级可靠性性能方面的最新进展。将回顾一项实验设计 (DOE) 研究,该研究通过实验结果证明了改进的板内温度循环 (TCoB) 性能。我们计划进行多项 DOE 研究,并准备了测试载体,变量包括焊料材料、阻焊层开口/再分布层 (RDL) 设计的铜焊盘尺寸、铜 (Cu) RDL 厚度和凸块下金属化 (UBM) 以及印刷电路板 (PCB) 上的铜焊盘设计 (NSMD、SMD)。通过这些参数研究和 TCoB 可靠性测试,测试载体通过了 1000 次温度循环 (TC)。菊花链测试载体用于在行业标准测试条件下测试 TCoB 可靠性性能。