• 与“捕食者”性能相似 • 无机翼挂点 • 改进的航空电子设备(三重冗余) • 自动起飞和降落能力
过去十年,各种用途的无人机数量迅速增加。这促使监管机构急于制定安全的整合战略,以适当共享空域的利用率。处理故障和失效是关键问题之一,因为它们在可用的事件报告中占了更大的比重。这些小型飞行器的硬件限制表明,需要使用分析冗余,而不是常规飞行中通常的硬件冗余做法。在本研究过程中,回顾了飞机的故障检测和诊断。然后模拟了 MAKO 飞机的非线性模型,以生成故障和正常飞行数据。该平台能够为各种飞行条件生成数据,并设计用于故障检测和诊断的机器学习实现。
诸如三重模块冗余之类的冗余机制通过复制来保护安全关键组件,从而提高系统的容错能力。然而,获得容错能力需要投入成本,例如增加执行时间、能耗或封装尺寸,因此在系统设计期间必须遵守这些约束。这使得寻找合适的组件组合的问题成为一项具有挑战性的任务,因为可能的保护组合数量会随着组件数量的增加而呈指数增长。我们提出了基于系列的方法来解决冗余系统建模和分析阶段的组合爆炸问题。基于在 S IMULINK 中设计的系统,我们展示了如何获得包含所有可能保护组合的模型,并提出了一个工具链,该工具链在给定概率误差模型的情况下生成离散马尔可夫链系列。使用能够实现简洁系列表示和分析的符号技术,我们展示了如何通过单个基于系列的分析运行来保护和分析实际大小的 S IMULINK 模型,而对每个保护组合进行逐一分析显然会超出任何实际时间限制。
静态冗余分配不适用于在可变和动态环境中运行的硬实时系统(例如雷达跟踪、航空电子设备)。自适应容错 (AFT) 可以在时间和资源约束下确保关键模块具有足够的可靠性,方法是将尽可能多的冗余分配给不太重要的模块,从而优雅地减少它们的资源需求。在本文中,我们提出了一种支持实时系统中自适应容错的机制。通过为动态到达的计算选择合适的冗余策略来实现自适应,以确保所需的可靠性并最大限度地发挥容错潜力,同时确保满足最后期限。使用模拟 AWACS 预警机中雷达跟踪软件的实际工作负载来评估所提出的方法。结果表明,在满足时间约束的任务方面,我们的技术优于静态容错策略。此外,我们表明,这种以时间为中心的性能指标的增益不会将执行任务的容错性降低到预定义的最低水平以下。总体而言,评估表明,所提出的想法产生了一个在容错维度上动态提供 QOS 保证的系统。
摘要 - 非常纠正一系列错误的代码引起了显着关注。最重要的原因之一是,在某些新兴技术(例如DNA存储)中发生了误差爆发。在本文中,我们研究了一种称为A(t,s)爆炸的错误,该错误删除了连续的符号并在同一坐标处插入s任意符号。请注意,A(t,s)爆炸误差可以看作是插入爆发(t = 0),删除爆发(s = 0)和替换(t = s)的概括。我们的主要贡献是给出Q -ary(t,s)的显式构造 - 启动校正log n + o(1)冗余位的校正代码,对于任何给定的恒定非负整数t,s和q≥2。这些代码具有最佳的冗余,直到添加剂常数。此外,我们应用我们的(t,s) - 启动校正代码来对抗其他各种类型的错误并改善相应的结果。特别是,我们的副产品之一是一个置换代码,能够纠正具有log n + o(1)冗余位的t稳定删除的爆发,这是最佳的添加剂常数。
GE 提供了一种独特的技术,称为冗余并联架构 (RPA),该技术可以并联不间断电源 (UPS) 模块,实现真正的冗余。使用 RPA,无需外部电子设备或开关来控制并联系统中的 UPS 模块。系统中的一个 UPS 模块任意担任领导角色,而其他 UPS 模块可以访问所有控制参数。如果一个 UPS 发生故障,负载会自动在其他 UPS 之间重新分配。如果主 UPS 发生故障,则另一个 UPS 将自动担任领导角色。RPA 系统设计为没有单点故障,可确保为关键负载提供最高级别的电源保护。
GE 提供了一种独特的技术,称为冗余并联架构 (RPA),该技术可以并联不间断电源 (UPS) 模块,实现真正的冗余。使用 RPA,无需外部电子设备或开关来控制并联系统中的 UPS 模块。系统中的一个 UPS 模块任意担任领导角色,而其他 UPS 模块可以访问所有控制参数。如果一个 UPS 发生故障,负载会自动在其他 UPS 之间重新分配。如果主 UPS 发生故障,则另一个 UPS 将自动担任领导角色。RPA 系统设计为没有单点故障,可确保为关键负载提供最高级别的电源保护。