1 西北农林科技大学植物保护学院,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 2 西北农林科技大学小麦抗逆改良创新中心,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 3 西北农林科技大学生命科学学院,旱区作物逆境生物学国家重点实验室,陕西杨凌 712100 4 中国科学院种子设计创新研究院,遗传与发育生物学研究所,植物细胞与染色体工程国家重点实验室,基因组编辑中心,北京 5 中国科学院大学现代农业学院,北京 6 西北农林科技大学旱区作物逆境生物学国家重点实验室,杨凌 712100
除非另有说明,否则本演示文稿的再利用均根据 CC BY 4.0 许可授权。对于任何不属于欧盟的元素的使用或复制,可能需要直接向相应的权利持有人寻求许可。
背景在越南,土地稀缺问题日益严重,主要原因是人口快速增长和人均经济增长加快。这导致土地消耗增加,特别是用于粮食和能源生产,并带来诸如森林砍伐、生物多样性丧失和天然二氧化碳吸收减少等负面影响。这些问题要求重新考虑土地使用。为实现《巴黎协定》的气候目标,越南越来越关注可再生能源,特别是光伏系统。这是必要的,因为该国面临着每年约 10% 的电力需求增长。推广可再生能源是解决越南土地使用冲突和气候变化的关键方面。缓解土地资源压力的一种策略是将其用于粮食和能源生产的用途增加一倍。在同一区域结合水产养殖生产和光伏能源生产(Aqua-PV)是非常新的发展;据我们所知,在该项目开始时,没有其他用于养虾的 Aqua-PV 项目(图 1)。在养虾业中,所谓的生物絮团系统得到越来越多地应用,其中依赖光的藻类和微生物在水质和虾的营养中发挥着重要作用(图 2)。因此,了解光伏系统遮光对生物絮团系统的影响至关重要。SHRIMPS 项目旨在帮助减少越南未来水产养殖和光伏地面安装系统的土地需求。同时,它旨在提高土地面积的整体生产力。这样,越南的土地使用和经济增长就可以在生态和社会经济上更加可持续地发展。在由 Thünen 渔业生态研究所开展的子项目中,我们研究了光伏系统遮光虾池对池塘生物系统和虾生产的影响。
摘要 数字化转型推动了印度尼西亚电子商务和初创企业的发展。印尼作为电子商务快速增长的国家,在数字应用和初创企业方面拥有巨大潜力,其中包括水产养殖业。 eFishery 是印度尼西亚第一家水产养殖初创公司,利用物联网技术帮助养殖鱼虾。 eFishery 提供先进的饲料自动化和环境监测解决方案,从而提高水产养殖的效率和可持续性。商业模式画布 (BMC) 分析确定了 eFishery 的主要客户群,包括传统渔民和鱼/虾养殖户,以及自动监控系统和数据驱动喂养等价值主张。战略合作伙伴关系和平台技术的使用是 eFishery 在水产养殖业取得成功的关键。这项研究表明了在水产养殖中采用物联网技术对提高生产力和可持续性以及为印度尼西亚的数字经济做出积极贡献的重要性。通过利用快速发展的电子商务和初创企业,eFishery 可以扩大其市场并巩固印度尼西亚作为全球水产养殖业主要参与者的地位。关键词:数字化转型、水产养殖、电子渔业、商业模式画布、初创企业
对公平,多样性,包容性和可及性(EDIA)的有意义的行动是新斯科舍省政府中的优先事项,以确保我们的劳动力,我们的计划和服务代表了我们服务的多元化公众。渔业和水产养殖部致力于倡导一个更具包容性,多样性,公平和易于获得的工作场所,并支持我们渔业和水产养殖部门的包容,多样性,公平和可及性。FAEEIF申请人被要求描述如何将Edia Lens应用于其工作和拟议项目的交付。
Gratacap, RL、Wargelius, A.、Edvardsen, RD 和 Houston, RD 2019。基因组编辑在改善水产养殖育种和产量方面的潜力。遗传学趋势,35(9):672–684。Kishimoto, K.、Washio, Y.、Yoshiura, Y.、Toyada, A.、Ueno, T.、Fukuyama, H.、Kato, K. 和 Kinoshita, M. 2018。通过 CRISPR/Cas9 基因组编辑培育出骨骼肌质量增加、体长缩短的红鲷品种 Pagrus major。水产养殖,495:415–427。Norris, A. 2017。基因组学在鲑鱼水产养殖育种计划中的应用:谁知道基因组革命将把我们带向何方?海洋基因组学,36:13–15。 Pavelin, J.、Jin, YH、Gratacap, RL、Taggart, JB、Hamilton, A.、Verner-Jeffreys, DW、Paley, RK、Rubin, C.、Bishop, SC、Bron, JE、Robledo, D. 和 Houston, R. 2021. nedd-8 活化酶基因是大西洋鲑对传染性胰腺坏死病毒具有遗传抗性的基础。基因组学,113(6): 3842–3850。
图 1 探索提供宿主抵抗力的机制的遗传基础。宿主对海虱的抵抗力可能受到环境和饮食因素的影响,这些因素可增强或抑制鲑鱼的免疫力、免疫细胞反应(适应性和先天性免疫系统)、吸引虱子到宿主的利他素以及虱子分泌的抑制或触发宿主免疫力的蛋白质(红色文本)。绿色文本列出了可能促进大西洋鲑、粉红鲑和抵抗力更强的鲑鱼品系宿主免疫力的更详细过程和因素。寻找感染后关键时间点上调或下调的宿主基因:(1)全基因组关联研究可以识别与宿主抗性相关的染色体区域的基因,(2)单核 RNA 测序(snRNA 测序)可用于研究靠近鲑鱼和虱子界面的宿主组织中哪些细胞类型群体有反应,(3)空间转录组学和空间蛋白质组学可用于精确绘制反应发生的位置,(4)蛋白质组学可用于发现宿主细胞和虱子免疫调节蛋白之间的相互作用(抑制或触发宿主免疫),(5)RNA 测序可用于研究宿主的信息化学产生和虱子对利他素的转录组反应,(6)基因编辑可用于测试影响宿主抗性的假定基因,通过用海虱实验挑战编辑和未编辑的鲑鱼并比较附着的虱子数量
本文件旨在描述取代 2008 年国家水产健康动物计划 (NAAHP) 的计划。这项新的国家水产养殖健康计划和标准 (NAHP&S) 提出了美国农业部 (USDA) 的愿景,即建立强大的国内基础设施来支持和确定水生牲畜的健康。此外,该计划确立了美国农业部作为监督农场养殖水生牲畜健康和促进的联邦牵头机构。这项新计划不适用于野生动物或支持野生动物的公共运营。国内水产养殖业在过去十年中发生了重大变化,并有望在未来几十年进一步扩大。这种扩张和增长对于国内粮食安全至关重要。这项新国家计划中提出的要素被认为对于支持美国水产养殖的需求和增长至关重要,以便以提供健康和管理监督的方式生产农场养殖的水生牲畜,并解决用于确定和评估水生动物健康的服务的完整性和一致性。
通过法律倡议立场转化气候行动:LLM项目:水产养殖法律和政策 - 仅基于海洋的气候解决方案项目背景下,海洋与环境法研究所(MELAW)因在海洋和环境法教学和研究方面的卓越表现而受到国际认可。Melaw位于Dalhousie University的Schulich法学院中,并进行了研究和咨询活动。Melaw还指导海洋与环境法计划(MELP)学术专业。Melaw是对社会生态气候变化轨迹(横断面)的变革性适应的成员,这是CFREF资助的转化气候行动1倡议的一部分。样品是一个跨学科的大型研究项目,旨在开发创新的适应解决方案,以实现气候变化对加拿大沿海地区的深远影响。与魁北克省大学(Québec)和Dalhousie University(Halifax)的团队合作进行,Transect着重于理解和解决复杂的社会生态系统(SES)问题,这是由于气候变化的当地和全球挑战而引起的。在横断面中,梅拉夫的目标是解决不断发展的法律和政策格局,用于基于海洋的解决方案,以确定公平,公正和可持续的海洋气候行动所需的渐进和变革性法律和政策改革,重点关注沿海社会生态系统的影响和机会。水产养殖为两种适应的气候变化提供了解决方案(例如LLM的参考条款提高粮食安全,提供替代的生计,增强沿海的弹性)和缓解措施(用于碳固换的大量藻类)。有必要了解加拿大和省级法律和政策框架是否可以使水产养殖作为气候变化解决方案的发展,包括通过适当的监管激励措施以及环境和社会保障措施的有效性,以确保此类发展是可持续的,弹性的。
•鲑鱼 - 用于控制由嗜血性嗜血杆菌引起的溃疡疾病,由salmonas salmonicida引起的雌激素,嗜水的细菌出血性败血症和假单胞菌疾病引起的细菌出血性败血病。•淡水饲养的鲑鱼,以控制与精神病菌有关的冷水疾病引起的死亡率。•淡水饲养的Oncorhynchus mykiss-用于控制与柱状柱相关的柱状疾病引起的死亡率。•cat鱼控制着由氢嗜血杆菌和假单胞菌疾病引起的细菌出血性败血病。•龙虾控制了由Aerococcus viridans引起的gaffkemia。•太平洋鲑鱼对骨骼组织的标记。•重达55克的淡水饲养的鲑鱼标记骨骼组织