摘要背景:自动化表型分析技术正在不断推进育种过程。然而,在整个生长季节收集各种次要性状并处理大量数据仍然需要巨大的精力和时间。选择具有最大预测能力的最少数量的次要性状有可能减少表型分析工作量。本研究的目的是从无人机图像和关键生长阶段中提取对解释冬小麦产量贡献最大的主要特征。2018 年春季生长季,无人机系统收集了 5 个日期的多光谱图像和 7 个日期的 RGB 图像。从植被指数和植物高度图中提取了两类特征(变量),共计 172 个变量,包括像素统计和动态增长率。采用参数算法、LASSO 回归(最小角度和收缩选择算子)和非参数算法、随机森林进行变量选择。使用 LASSO 估计的回归系数和随机森林提供的置换重要性得分,从每个算法中确定影响粮食产量的十个最重要的变量。结果:两种选择算法都对灌浆期前后与植物高度相关的变量赋予了最高的重要性得分。还选择了一些与植被指数相关的变量
摘要背景:自动化表型分析技术正在不断推进育种进程。然而,在整个生长季节收集各种次要性状并处理大量数据仍然需要付出巨大的努力和时间。选择具有最大预测能力的最少数量的次要性状有可能减少表型分析工作量。本研究的目的是从无人机图像和关键生长阶段中提取出对解释冬小麦产量贡献最大的主要特征。2018 年春季生长季,无人机系统收集了 5 个日期的多光谱图像和 7 个日期的 RGB 图像。从植被指数和植物高度图中提取了两类特征(变量),共计 172 个变量,包括像素统计数据和动态增长率。变量选择采用参数算法LASSO回归(最小角度和收缩选择算子)和非参数算法随机森林。使用LASSO估计的回归系数和随机森林提供的排列重要性得分来确定每个算法中影响粮食产量的十个最重要的变量。结果:两种选择算法都将最高重要性得分分配给灌浆期前后与植物高度相关的变量。一些植被指数相关变量也被算法选择,主要在生长早期到中期和衰老期间。与使用从测量表型得出的所有172个变量进行产量预测相比,使用选定的变量表现相当甚至更好。我们还注意到,适应性 NE 品系的预测准确度 (r = 0.58–0.81) 高于本研究中具有不同遗传背景的其他品系 (r = 0.21–0.59)。
摘要背景:自动化表型分析技术正在不断推进育种过程。然而,在整个生长季节收集各种次要性状并处理大量数据仍然需要巨大的精力和时间。选择具有最大预测能力的最少数量的次要性状有可能减少表型分析工作量。本研究的目的是从无人机图像和关键生长阶段中提取对解释冬小麦产量贡献最大的主要特征。2018 年春季生长季,无人机系统收集了 5 个日期的多光谱图像和 7 个日期的 RGB 图像。从植被指数和植物高度图中提取了两类特征(变量),共计 172 个变量,包括像素统计和动态增长率。采用参数算法、LASSO 回归(最小角度和收缩选择算子)和非参数算法、随机森林进行变量选择。使用 LASSO 估计的回归系数和随机森林提供的置换重要性得分,从每个算法中确定影响粮食产量的十个最重要的变量。结果:两种选择算法都对灌浆期前后与植物高度相关的变量赋予了最高的重要性得分。还选择了一些与植被指数相关的变量