项目描述:本项目组合的目标是开发理解复杂、异质和反应性材料动力学所需的基本科学知识,从而实现弹药和推进领域的重大进步。因此,本项目组合支持的研究领域旨在发现、描述和可靠地预测与爆炸物的高能量、固体推进剂燃烧和受冲击载荷影响的材料结构动力学相关的基本化学、物理学、流体动力学和材料科学。本项目组合中的研究总体范围将通过实验、数值和理论努力的平衡组合来实现。本项目组合感兴趣的基础科学对于未来空军和太空部队武器系统及其推进能力的革命性进步必不可少,包括提高能量密度、作战效率、基于效果的优化和恶劣环境下的生存能力。
本报告对排水型船体水动力冲击载荷的最新进展进行了全面评估。本报告从三种不同现象(砰击、波浪拍击和正面冲击)的角度考虑了这一主题。从环境和船舶特性的角度定义了导致水动力冲击的因素。在二维和三维分析水动力模型、水弹性模型、耐波性理论、模型试验和全尺寸数据等子类别中回顾了冲击理论。报告确定并描述了适合分析和潜在设计应用的技术和程序,总结了每种技术和程序的特点,并介绍了与所介绍的技术和程序相关的示例计算。报告最后提出了未来研究的建议。
1. 引言 安全和保障是航空活动中最重要的问题之一。确保飞机安全和保障的最重要阶段之一是对这些车辆进行维护。许多维护操作都是定期或每次飞行后和飞行前进行的,必要时还会进行故障排除操作。考虑到即使是一颗螺丝钉丢失也会危及飞行安全 [1],很明显维护操作必须非常小心地进行。根据现代护理计划程序 [2],维护有两种基本类型。它们被称为“航线维护”和“基地维护”。虽然航线维护比基地维护更肤浅,但它比基地维护执行得更频繁。飞行前、每日、每周或一定飞行时间后都被视为航线维护操作。飞机基地维护的关键步骤是控制冲击载荷 [3]。自然事件的影响,例如异物撞击,
虽然这些技术听起来像是詹姆斯邦德电影里的情节,但其成果实际上很快就被商业化应用。该团队在劳斯莱斯喷气发动机撞击问题上的研究让航空航天工程师开发出新的解决方案来应对鸟撞发动机部件,宝马、奥迪、大众和捷豹等汽车制造商也利用该团队的尖端材料知识来制造更安全、更轻便、更高效的汽车。通过了解材料对碰撞的反应,牛津大学的研究人员可以帮助开发出更具革命性的材料,让每个人都受益。“Nik Petrinic 开发了先进的测试和建模技术,可以深入了解材料在冲击载荷下的行为。他的研究成果让劳斯莱斯能够为燃气轮机设计出更轻便、更高效的部件,从而更耐用、更有竞争力,对环境的影响也更小。”劳斯莱斯的 John Marshall 博士
• 高性能:VLS 编码器提供高分辨率数字或模拟输出,角度分辨率高达 21 位,精度高达 ±0.001°。• 轻巧紧凑• 坚固:VLS 电容式编码器是空心浮轴设备,没有轴承或其他接触件。它们符合 MIL-STD-810F 的振动规范,并经过了 10 毫秒内高达 100g 的冲击载荷测试。• 适合太空使用:可承受轨道辐射条件以及高 EMI、RFI 和磁场• 对温度不敏感:能够承受极端的热波动• 真空兼容:特殊涂层可将排气量降至最低,达到 10ˉ⁵ 托的真空度• 经济:由于 VLS 编码器是经过改进的 COTS 设备,因此它们的成本比传统的专用太空级编码器要合理得多。大多数系统需要多个编码器,因此这种成本差异是一个很大的优势。 • 可用:VLS 编码器基于改进的 COTS 设计,因此我们可以大批量、快速地提供它们。
拟议的水星着陆器的质量和功率限制非常严格 — 科学有效载荷约 7 公斤,探测器及其科学有效载荷的能量仅为 400 瓦时 [1]。对于探测器,预计科学有效载荷不到 1 公斤,最大功率为 5 瓦,因此任何仪器都必须非常经济地使用这些资源。水星的环境条件非常极端,白天的表面温度高达 +470 ◦ C,夜晚的表面温度最高可达 − 180 ◦ C。白天着陆点在使用太阳能电池时几乎不会对着陆器的能量预算造成任何限制(太阳辐射比地球高 4 到 10 倍,见表 1.2)——但高表面温度使得几乎不可能制造能够轻松抵抗这些温度的仪器,尤其是电子设备。因此,首选的着陆点是在夜间。这样就可以利用仪器电子设备散发的热量来控制温度,但缺点是不能使用太阳能电池,必须自带电源。此外,将使用气囊着陆,导致冲击载荷高达 200 G(≈ 2’000 m/s 2)。
这项工作的目的是对受冲击载荷的六角硼核晶格中的精细结构参数和能量散射通道进行彻底分析。这种外部影响会导致材料中的冲击波形成。已经表明,可以通过在正常的方向上向单个原子行给出初始脉冲来启动冲击波。同时,此类初始条件与稳定的冲击波曲线不符,但在足够短的过渡期约为0.1 ps后形成。已经表明,所研究材料中的冲击波只能在两个晶体学方向(即曲折和扶手椅方向)传播。在所有情况下,冲击波传播的速度比所研究材料中的声音速度快。已经研究了冲击波传播的机制。我们已经揭示了锯齿形方向冲击波的传播与最小的能量损耗有关。我们发现冲击波传播期间材料中能量耗散的主要机制是键长和键角振荡。
尿素肥料行业的生产过程产生的废水含量很高,超过了肥料废水的质量标准。因此,有必要治疗氨水含量高的尿素肥料废水。可用于处理此类废水的技术之一是测序批处理反应器(SBR)技术。选择了SBR技术,因为它在整个过程中仅需要一个反应器,在整个过程中,在几个反应堆中发生的常规活性污泥系统中。冲击负荷通常发生在废水处理厂中,包括有机休克载荷和液压冲击负荷。这项研究中SBR操作中使用的废物是尿素肥料废水,该废水源自印度尼西亚西爪哇省的尿素肥料工业。要测试的参数是COD,MLVSS,DO,pH,温度,浊度和氨浓度。结果表明,在正常负载下降低氨水的效率为300 mL/天的效率为99.5%,而当给出600 mL/天的休克载荷时,获得了98%的效率。这证明了SBR即使其效率略有降低,也可以处理冲击载荷。
2.1 加拿大和美国的经济在很大程度上依赖于进出口,而进出口大部分是通过船舶运输的。因此,船舶的性能和安全对其整体经济至关重要。这些船舶承受各种结构载荷,包括波浪作用引起的疲劳载荷,还可能因与冰和其他物体碰撞而承受冲击载荷,此外还有船舶自重和所载人员和货物重量产生的服务载荷。此外,如果这些船舶在北大西洋和太平洋以及北冰洋航行,它们可能会经受寒冷天气。气候变化使北冰洋部分地区在更长的航运季节内可以航行。因此,如今,更多的商业货船在北极水域航行,夏季也有少量游艇航行。预计在不久的将来,将有更多的商业船舶、游艇和沿海巡逻船穿越西北航道,航行时间会更长。因此,我们脑海中自然而然地浮现出一个问题:“航行于北冰洋西北航道的船舶将面临哪些挑战?”例如,北极船舶在西北航道面临的众多危险之一就是北极岛屿解体释放的重冰。北极船舶可能还需要面对许多其他未知和已知的威胁和挑战。因此,该项目旨在进行范围界定研究,旨在确定船舶在北冰洋航行时需要面对的结构行为方面的各种挑战和问题。