致癌融合驱动因子在血液癌症中很常见,因此是未来基于 CRISPR-Cas9 的治疗策略的相关靶点。然而,患者断点位置的变化对传统的断点靶向 CRISPR-Cas9 介导的破坏策略构成了挑战。在这里,我们提出了一种新的双内含子靶向 CRISPR-Cas9 治疗策略,用于靶向 5-10% 的新生急性髓系白血病 (AML) 中发现的 t(8;21),该策略可有效破坏融合基因,而无需事先确定断点位置。与非 t(8;21) AML 对照相比,在 RUNX1-RUNX1T1 双内含子靶向破坏后,AML t(8;21) Kasumi-1 细胞的体外生长率和增殖率分别降低了 69% 和 94%。此外,与对照组相比,注射了 RUNX1-RUNX1T1 破坏的 Kasumi-1 细胞的小鼠体内肿瘤生长减少了 69% 和 91%。这些发现证明了 RUNX1-RUNX1T1 破坏的可行性,在从被诊断为 AML t(8;21) 的患者身上分离的原代细胞中得到了证实。总之,我们证明了 AML t(8;21) 中双内含子靶向 CRISPR-Cas9 治疗策略的原理验证,而无需精确了解断点位置。
表明,在车轮和喷射试验中,潜伏期的长度随着喷射直径的减小而近似线性增加,范围从 2 毫米到 0.4 毫米。给出的解释是,最大冲击压力的持续时间随喷射直径线性减小,这直接影响产生的损坏量。与此结果相关的是表面粗糙度对损坏的影响。对于恒定的液滴尺寸,减小粗糙表面上凸起的尺寸或以某种方式使样品变薄,使得初始冲击面积与液滴的截面相比较小,可大幅减少每单位面积产生的损坏量2 这种减小固体尺寸而不是液滴尺寸的安排同样会减少水击压力的持续时间,从而减少损坏。
本指南提供有关如何使用内置 Microsoft Word 功能来减小图像大小以及文档大小的信息。在线提交工具对提交的大小有限制,因此减小尺寸有助于轻松上传。
1. 充电过程 IU5365E 采用完整的涓流充电、恒流充电、过充电、浮充 电四个过程进行充电。当电池电压小于涓流点时,系统以 I *20% 充电电流充电;当电池的电压大于涓流点时,系 C C 统以 I 充电电流充电;当电池电压达到所设定的过充电电 CC 压值 , 充电电流逐渐减小,当电流减小到所设定的过充电 结束电流值时,过充电结束,系统进入到浮充电过程 , 浮 充电电压为过充电电压V 的 90% 。 OC 浮充电模式的存在可以弥补由于电池自放电或者负载耗电 所导致的电池能量损失。在浮充电状态,如果输入电源和 电池仍然连接在充电器上,电池电压仍然逐渐下降到所设 置的过充电电压V 的 85% 时,系统会重新恢复充电状态。 OC
摘要 超过一半的结肠直肠癌 (CRC) 都会发生激活的 RAS 突变。RAS 突变的 CRC 具有病程侵袭性和缺乏适当的靶向疗法的特点,因此治疗起来非常困难。最近的临床前研究表明,RAS 突变的细胞通过自噬的发展逃避治疗性 MEK 抑制,而这种逃避可以通过使用抗疟药羟氯喹来阻止。现有的临床数据仅限于一例 KRAS 突变胰腺癌患者的病例观察。在这里,我们报告了一名患有 KRAS G12D 突变 CRC 的女性,她的肿瘤对常规疗法没有反应。作为最后的希望选择,我们联合使用了比尼替尼、羟氯喹和贝伐单抗。患者的身体状态迅速改善。在治疗的前 6 周内,肿瘤肿块大小缩小了 17%。本报告呼吁评估 MEK 抑制剂和羟氯喹联合治疗 RAS 突变癌症化疗耐药患者的疗效,可能还要添加贝伐单抗。© 2020 作者。由 S. Karger AG,巴塞尔出版
摘要:在本研究中,我们研究了双曲双阱势 (HDWP) 的分数阶薛定谔方程 (FSE) 中的位置和动量香农熵,分别表示为 S x 和 S p 。我们在分析中探索了用 k 表示的分数阶导数的各种值。我们的研究结果揭示了有关低位态的位置熵密度 ρ s ( x ) 和动量熵密度 ρ s ( p ) 的局部化特性的有趣行为。具体而言,随着分数阶导数 k 的减小,ρ s ( x ) 变得更加局部化,而 ρ s ( p ) 变得更加非局部化。此外,我们观察到随着导数 k 的减小,位置熵 S x 减小,而动量熵 S p 增加。特别地,这些熵的总和随着分数阶导数 k 的减小而持续增加。值得注意的是,尽管随着 HDWP 深度 u 的增加,位置 Shannon 熵 S x 增加,动量 Shannon 熵 S p 减少,但 Beckner–Bialynicki-Birula–Mycielski (BBM) 不等式关系仍然成立。此外,我们研究了 Fisher 熵及其对 HDWP 深度 u 和分数阶导数 k 的依赖关系。结果表明,Fisher 熵随着 HDWP 深度 u 的增加和分数阶导数 k 的减小而增加。
摘要:本研究旨在建立常规风洞试验中路基上空边界层与列车模型气动载荷之间的相关性。首先,通过PIV实验测试方法研究了不同前缘角(15°、30°、45°)下路基周围的流动特性。然后,开展了高速列车气动性能风洞试验。将结果与以前的动模型试验数据进行了比较。结果表明,由于边界层的存在,作用在列车头部下部的压力减小,而其他位置的影响不明显。这是列车气动阻力和升力减小的原因。此外,随着边界层厚度的增加,减小效果更加明显。所获得的实验结果可作为高速列车风洞试验的气动力校准。
起飞时,你会注意到,对于给定的升降舵输入,飞机的旋转速度比预期的要快得多。这表明:A) 重心太靠前 B) 压力中心在重心后方 C) 重心可能位于后方极限 D) 飞机超载 重心接近前方极限会产生什么影响?A) 爬升率降低 B) 爬升率能力提高 C) 诱导阻力减小 D) 特定燃油消耗减少 如果重心接近前方极限,飞机将:A) 起飞时倾向于过度旋转 B) 由于攻角减小而受益于阻力减小 C) 在给定空速下需要更少的功率 D) 需要升降舵配平,这会导致燃油消耗增加
起飞时,您会注意到,对于给定的升降舵输入,飞机的旋转速度比预期的要快得多。这表明:A) 重心太靠前 B) 压力中心位于重心后方 C) 重心可能位于后方极限 D) 飞机超载 重心接近前方极限会产生什么影响?A) 爬升率降低 B) 爬升率能力增强 C) 诱导阻力减小 D) 特定燃油消耗减少 如果重心接近前方极限,飞机将:A) 起飞时容易过度旋转 B) 由于攻角减小而受益于阻力减小 C) 在给定空速下需要更少的功率 D) 需要升降舵配平,这会导致燃油消耗增加