在本文中,我们详细分析了变分量子相位估计 (VQPE),这是一种基于实时演化的基态和激发态估计方法,可在近期硬件上实现。我们推导出该方法的理论基础,并证明它提供了迄今为止最紧凑的变分展开之一,可用于解决强关联汉密尔顿量。VQPE 的核心是一组具有简单几何解释的方程,它们为时间演化网格提供了条件,以便将特征态从时间演化的扩展状态集中分离出来,并将该方法与经典的滤波器对角化算法联系起来。此外,我们引入了所谓的 VQPE 的酉公式,其中需要测量的矩阵元素数量与扩展状态的数量成线性比例,并且我们提供了噪声影响的分析,这大大改善了之前的考虑。酉公式可以直接与迭代相位估计进行比较。我们的结果标志着 VQPE 是一种自然且高效的量子算法,可用于计算一般多体系统的基态和激发态。我们展示了用于横向场 Ising 模型的 VQPE 硬件实现。此外,我们在强相关性的典型示例(SVP 基组中的 Cr 2)上展示了其威力,并表明只需约 50 个时间步就可以达到化学精度。
单位 - I:通过梯形形式和正常形式的矩阵矩阵等级,高斯 - 约旦方法的非单个矩阵倒数,线性方程系统:求解高斯消除方法的均匀和非均匀方程的系统,高斯·塞德尔迭代方法。UNIT - II: Eigen values and Eigen vectors Linear Transformation and Orthogonal Transformation: Eigen values, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley -Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of Quadratic form通过正交转换为规范形式。单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的系列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单位-IV:多变量计算(部分分化和应用)的定义极限和连续性。部分区分:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:
摘要-本研究探讨了泡利幺正算子的数学性质和特征及其在量子信息论中的应用。泡利算子是量子力学中的基本对象,在描述和操纵量子态方面起着至关重要的作用。通过全面的分析,我们研究了泡利算子的幺正性、厄米性、特征值性质和代数结构。我们探索了它们在布洛赫球面上的几何解释,并讨论了泡利分解定理等高级性质及其在稳定器形式中的作用。该研究表明了泡利算子在量子信息各个方面的广泛影响,包括量子门、测量、纠错码和算法。我们的研究结果强调了泡利算子在量子电路设计、纠错方案和量子技术发展中的不可或缺性。我们还确定了需要进一步研究的领域,例如泡利算子在高维系统中的行为及其在特定噪声模型的量子误差校正中的最佳用途。这项研究有助于更深入地了解这些基本的量子信息工具及其在量子计算和通信中的广泛应用。索引术语 - 数学性质、泡利幺正算子、量子信息论
开发工程师为实用应用所需的矩阵代数技术。查找本征值和本征媒介并使用线性转换解决问题在更高维度中学习微积分的重要工具。熟悉几个变量的功能,这些函数可用于优化。熟悉两个和三个维度的几个变量功能的双重和三个积分。单位-I:矩阵矩阵的矩阵等级,由echelon形式,正常形式。cauchy –binet公式(无证明)。线性方程式的高斯 - jordan方法系统的非奇异矩阵倒数:通过高斯消除方法的均质和非均匀方程的求解系统,高斯·塞德尔迭代方法。单位-II:线性变换和正交转换:特征值,特征媒介及其特性(无证据证明),基质的对角线化,Cayley-汉密尔顿定理(没有证明),cayley-hamilton Theorem,quadratic of quadrations of quadrations of quadrations of quadration fore the quadrations fore the quadrations的逆和力量的逆和力正交转换单元-III:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释,Cauchy的平均值定理,Taylor's和Maclaurin定理以及剩余(无证据),问题和上述定理的剩余(无证据)。单位-IV:部分分化和应用(多变量微积分)
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和本征媒介使用正交转换将二次形式减少到规范形式。分析序列和序列的性质。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。单元I:矩阵矩阵:矩阵的类型,对称;隐士偏度对称;偏斜;正交矩阵;单一矩阵;按梯形形式和正常形式的矩阵等级,高斯 - 约旦方法的非单个矩阵倒数;线性方程系统;解决同质和非均匀方程的求解系统。高斯消除方法;高斯Seidel迭代方法。单元-II:特征值和本征载体线性变换和正交转换:特征值和特征向量及其特性:矩阵的对角线化; Cayley-Hamilton定理(没有证据);查找矩阵的逆向和力量由Cayley-Hamilton定理进行;二次形式的二次形式和性质;通过正交转换单位-III将二次形式的形式降低至规范形式:序列与串联序列:序列的定义,极限;收敛,发散和振荡序列。系列:收敛,发散和振荡系列;一系列积极术语;比较测试,p检验,D-Alembert的比率测试; Raabe的测试;库奇的整体测试;库奇的根测试;对数测试。泰勒的系列。交替系列:Leibnitz测试;交替收敛序列:绝对和有条件收敛。单元-IV:微积分平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理。
物理学是一门经常基于近似的科学。从高能物理到量子世界,从相对论到热力学,近似不仅能帮助我们解运动方程,还能降低模型复杂性并集中于重要效应。这种近似的最大成功案例之一是有效的动力学生成器(哈密顿量、林德布拉量),它们可以在量子力学和凝聚态物理学中推导出来。用于推导它们的技术的关键要素是分离不同的时间尺度或能量尺度。最近,在量子技术中,人们采取了一种更积极的方法研究凝聚态物理学和量子力学。通过调整系统参数和设备设计可以逆向设计动力学生成器。这使得我们可以创建有效的生成器,用于许多信息论任务,例如绝热量子计算[1]、油藏工程[2]、量子门[3]等等。绝热量子定理[4,5]是此类近似的关键因素。它利用了慢时间尺度和快时间尺度的明确分离,由于其简单性、优美性和有趣的几何解释,吸引了一代又一代的物理学家。绝热量子定理最初的表述与动力学生成器有关。另一方面,在量子技术中,我们经常处理离散动力学,如固定门和量子映射。在连续描述和离散描述之间进行转换并不总是很简单,有时似乎是不可能的。这种困难在非马尔可夫量子信道中表现得更加明显:这些是物理操作[完全正和迹保持(CPTP)映射[6]],没有物理(例如林德布拉)生成器[非马尔可夫量子信道不能通过
近年来,人们发现了量子信息论与量子引力之间的一些深层次联系。AdS/CFT 对偶为研究这些联系提供了一个富有成效的框架。这种关系的主要例子是 Ryu-Takayanagi 公式,它为对偶 CFT 中的纠缠熵提供了几何解释 [1]。Van Raamsdonk 也强化了这种关系 [2]。他认为两个区域之间的纠缠量与它们的距离有关,我们可以通过纠缠自由度来连接几何,通过解开纠缠来分离它们。后来,这一观察导致了 ER=EPR 猜想 [3]。下一个例子来自将块算子重构为一组非局部模糊的 CFT 算子 [4-6],这导致了一些悖论。为了解决这些悖论,[7] 的作者使用了量子纠错码的概念。量子引力与量子信息论之间的第三个联系是量子计算复杂性 [8]。这些想法源于一个关于热平衡下 AdS 黑洞爱因斯坦-罗森桥增长的难题。全息复杂性使我们能够理解视界背后丰富的几何结构。量子复杂性的一个特性是,即使在边界理论达到热平衡之后很长时间,它仍会继续增长。事实上,据推测复杂性会持续增长,直到系统自由度数量呈指数增长的时间尺度 [9-11]。量子计算复杂性是量子信息论中的一个概念,它估计从简单的基本门构建所需目标状态的难度。在这个概念中,门是可以从全集中获取的幺正算子 [12,13]。在 AdS/CFT 对应关系的背景下,提出了两种评估边界态复杂性的建议。第一个是,复杂度应该是极值余维数为 1 的块超曲面 Σ 的体积的对偶,该曲面在定义边界状态的时间片上与渐近边界相交。该陈述总结为:CV = max V Σ
编写一组线性方程的矩阵表示,并分析方程系统的解决方案查找特征值和特征向量使用正交转换将二次形式减少到规范形式。在平均值定理上求解应用程序。使用beta和伽马函数评估不正确的积分找到两个具有/没有约束的变量的功能的极端值。评估多个积分,并将概念应用到查找区域,量ITUME-I:矩阵10 L矩阵的矩阵等级和正常形式的矩阵等级,正常形式,与juss-jordan方法的非单明性矩阵相反,高斯 - jordan方法,线性方程系统:均匀和非同性方程式的求解系统和非良好方程式的求解方法。UNIT-II: Eigen values and Eigen vectors 10 L Linear Transformation and Orthogonal Transformation: Eigenvalues, Eigenvectors and their properties, Diagonalization of a matrix, Cayley-Hamilton Theorem (without proof), finding inverse and power of a matrix by Cayley-Hamilton Theorem, Quadratic forms and Nature of the Quadratic Forms, Reduction of正交转换通过正交转换到规格形式的二次形式。单位-III:微积分10 L平均值定理:Rolle的定理,Lagrange的平均值定理,其几何解释和应用,Cauchy的平均值定理,Taylor的序列。确定积分的应用在评估曲线旋转的表面区域和体积(仅在笛卡尔坐标中),不当积分的定义:beta和伽马功能及其应用。单元IV:多变量演算(部分分化和应用)10 L极限和连续性的定义。部分分化:Euler的定理,总导数,Jacobian,功能依赖性和独立性。应用程序:使用拉格朗日乘数方法的两个变量和三个变量的功能的最大值和最小值。
写出一组线性方程的矩阵表示并分析方程组的解 查找特征值和特征向量 使用正交变换将二次形式简化为标准形式。 解决均值定理的应用。 使用 Beta 和 Gamma 函数评估不当积分 找到有/无约束的两个变量函数的极值。 评估多重积分并应用概念来寻找面积和体积 UNIT - I:矩阵 10 L 通过梯形和标准形式对矩阵进行秩,通过高斯-乔丹方法对非奇异矩阵进行逆运算,线性方程组:用高斯消元法、高斯赛德尔迭代法求解齐次和非齐次方程组。第二单元:特征值和特征向量 10 L 线性变换和正交变换:特征值、特征向量及其性质、矩阵对角化、凯莱-汉密尔顿定理(无证明)、用凯莱-汉密尔顿定理求矩阵的逆和幂、二次型和二次型的性质、用正交变换将二次型简化为标准形式。 第三单元:微积分 10 L 均值定理:罗尔定理、拉格朗日均值定理及其几何解释和应用、柯西均值定理、泰勒级数。应用定积分求曲线旋转的表面积和体积(仅限于笛卡尔坐标系)、不当积分的定义:Beta 函数和 Gamma 函数及其应用。第四单元:多元微积分(偏微分和应用)10 L 极限和连续性的定义。偏微分:欧拉定理、全导数、雅可比矩阵、函数依赖性和独立性。应用:使用拉格朗日乘数法求二元和三元函数的最大值和最小值。